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Abstract—This paper proposes a hybrid battery model-based 
high-fidelity state of charge (SOC) and electrical impedance 
estimation method for multicell lithium-ion batteries. The 
hybrid battery model consists of an enhanced Coulomb 
counting algorithm for SOC estimation and an electrical circuit 
battery model. A particle swarm optimization (PSO)-based 
online parameter identification algorithm is designed to 
estimate the electrical parameters of the cells sequentially. An 
SOC compensator is designed to correct the errors of the 
enhanced Coulomb counting SOC estimations for the cells 
sequentially. This leads to an accurate, robust online SOC 
estimation for individual cells of a battery pack. The proposed 
method is validated by simulation and experimental data 
collected from a battery tester for a four-cell polymer lithium-
ion battery pack. The proposed method is applicable to other 
types of electrochemical batteries. 

I. INTRODUCTION  

Multicell lithium-ion batteries consisting of a large 
number of cells are commonly used in electric vehicles 
(EVs) and plug-in hybrid electric vehicles (PHEVs). A 
battery is a complex system in which different cells may 
have different states, such as SOC, state of health (SOH), 
impedance, and capacity, etc., during operation. A significant 
problem of the traditional battery management system 
(BMS) is that it lacks internal cell-level monitoring 
capabilities. In order to ensure optimal performance and 
reliability of a battery system, the BMS should precisely 
monitor the SOC and electrical impedance of each battery 
cell. Moreover, the SOC and impedances offer not only the 
information of the power capability and available energy [1], 
but also the condition monitoring and diagnostic   capability 
(e.g., SOH) for the battery system [2]. Therefore, cell-level 
SOC and electrical impedances are the parameters of main 
interest for management of multicell batteries [3].  

A variety of battery SOC estimation methods have been 
developed, which, in general, can be classified into four 
categories: Coulomb counting-based methods, computational 
intelligence-based methods, model-based methods, and 

mixed methods. The Coulomb counting-based methods are 
simple and easy to implement in real-time systems by 
integrating the battery current over time [4]. However, they 
have unrecoverable problems that might be caused by factors 
such as a wrong initial SOC value, accumulation of 
estimation errors, and neglecting the self-discharge effect. 
Moreover, the Coulomb counting methods cannot keep track 
of battery nonlinear capacity variation effects, such as the 
rate capacity effect and recovery effect [5]. A simple 
analytical model called Peukert’s law [6] has been added to 
the Coulomb counting method [7] to capture the nonlinear 
relationship between the runtime of the battery and the rate 
of discharge; however, the recovery effect was not taken into 
account.  

The computational intelligence-based methods describe 
the nonlinear relationship between the SOC and the factors 
influencing the SOC, such as battery voltage, current, and 
temperature. Artificial neural network (ANN)-based models 
[8], fuzzy logic models [9], and support vector regression 
models [10] have been used to estimate the SOC of a battery. 
Although accurate estimation of SOC can be obtained by the 
computational intelligence-based methods, the learning 
process required by these methods has a quite high 
computational cost, and is difficult to implement in real-time 
SOC tracking.  

Model-based SOC estimation methods basically utilize a 
state-space battery model to design an observer for real-time 
SOC estimation. For example, the extended Kalman filter 
(EKF) has been widely used to estimate the SOC of a battery 
based on the electrical circuit model of the battery for PHEV 
and EV applications [11]. In general, the EKF methods 
provide an accurate solution for long-term SOC estimation. 
However, these methods require an accurate electrical circuit 
battery model, whose parameters, e.g., resistances and 
capacitances, typically vary with the SOC, temperature, 
current, aging, etc., of the battery cell. Therefore, online 
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parameter estimation is usually needed to provide an 
accurate battery model in the EKF methods [12]. 
Furthermore, even with an accurate electrical circuit battery 
model, the estimation error can be large when unexpected 
noise is present [13]. Moreover, the model-based SOC 
estimation methods, especially the EKF methods, have a 
higher computational cost than the nonmodel-based 
Coulomb counting methods.  

The mixed SOC estimation methods combine the 
advantages of the aforementioned three methods, such as the 
combination of an ANN and an EKF [14], or the 
combination of the Coulomb counting method with an EKF 
[15]. In [16], the authors proposed a hybrid battery model 
[5]-based real-time SOC and electrical impedance estimation 
method for a single polymer lithium-ion battery cell [17]. 
The hybrid battery model consists of an enhanced Coulomb 
counting algorithm and an electrical circuit battery model. 
The former was used to estimate the SOC of the battery cell, 
while the latter was used to estimate the internal parameters 
of the battery cell. 

This paper extends the work of [16] by proposing a real-
time cell-level SOC and electrical impedance estimation 
method for multicell lithium-ion batteries used in EVs and 
PHEVs. An enhanced Coulomb counting algorithm is 
applied for each cell. A SOC compensator is designed to 
correct the errors of the Coulomb counting-based SOC 
estimation for the cells sequentially by using the estimated 
cell open-circuit voltage Voc. The values of Voc and 
impedances of the cells are determined sequentially in real 
time by using a PSO-based online parameter identification 
algorithm. Therefore, the proposed method is capable of 
capturing nonlinear capacity effects of a battery and ensuring 
the robustness of the SOC estimation to unknown initial 
SOC, error accumulation, and the error due to neglecting the 
self-discharge effect. The proposed method is validated by 
using simulation and experimental results for a four-cell 
polymer lithium-ion battery pack. 

II. THE PROPOSED METHOD 

The proposed SOC and electrical impedance estimation 
method for multicell batteries consists of three parts as 
shown in Fig. 1: (1) a hybrid battery model, (2) a PSO-based 
parameter identification algorithm, and (3) an SOC 
compensator correcting the error of the enhanced Coulomb 
counting-based SOC estimation. The proposed method is 
executed to estimate the SOC and electrical impedances for 
each cell sequentially of a series-connected m-cell pack. 

A. The Hybrid Battery Model 

The enhanced Coulomb counting algorithm is designed to 
estimate the SOC of a battery cell based on a Kinetic Battery 
Model (KiBaM) [5]. It can capture the nonlinear capacity 
effects, such as the recovery effect and rate capacity effect, 
of the battery cell with a low computational cost, thereby is 

feasible for real-time applications [5]. The enhanced 
Coulomb counting algorithm for Cell i, (where i = 1, ···, m) is 
shown below: 
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where T is the sampling period; iB(k) is the instantaneous 
current of the battery pack at the time index k; k’ and c are 
parameters of the KiBaM; Ci,max, Ci,available, Ci,unavailable and 
ΔCi,unavailable are the maximum, available, unavailable 
capacities and the variation of the unavailable capacity 
during T of Cell i, respectively. The initial SOC, i.e., SOCi(0), 
is the estimated SOC of Cell i at the end of the last operating 
period (i.e., k = 0). 

The electrical circuit battery model describes the I-V 
characteristics and transient response of the battery cell, 
where a voltage-controlled voltage source, Vi,oc(SOC), is 
used to bridge the SOC to the cell open-circuit voltage; the 
series resistance, Ri,series, is used to characterize the 
charge/discharge energy losses of Cell i due to the 
resistances of electrode, electrolyte, separator, and contact; 
other resistances and capacitances are used to characterize 
the short-term (transient_S) transient response due to the 
double-layer capacitance and charge transfer as well as the 
long-term (transient_L) transient response due to the 
diffusion process of Cell i; and Vi.cell represents the terminal 
voltage of Cell i. To facilitate real-system applications, a 
discrete-time version of the electrical circuit battery model is 
expressed as follows:   
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where, 

 

Fig. 1.  The proposed SOC and electrical impedance estimation method 
for a series-connected m-cell pack. 
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where τS = Ri,transient_S·Ci,transient_S and τl = Ri,transient_L·Ci,transient_L. 
Assuming that Vi,OC is a constant, the z-transfer function of 
(5) is given in (6) and the corresponding difference equation 
is given in (7). The battery electrical parameters can be 
derived from (4), (7) and (8) if Vi,cell and iB are known.  
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B.  Electrical Parameter Identification by PSO 

The PSO method is employed to identify the internal 
parameters of the battery model. This optimization algorithm 
is able to find the global optimal solution with a high 
computational efficiency and a low implementation cost. The 
battery internal parameters that need to be identified include 
the open-circuit voltage, Voc, and electrical impedances, 
Rseries, Rtransient_s, Ctransient_s, Rtransient_l, and Ctransient_l, which are 
unknown variables of (7). At least six independent equations 
are needed to solve for the six unknown parameters. The six 
equations can be obtained from (7) by using measured 
battery cell voltage and current at eight sequential operating 
points as follows.  
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where j = 0, ···, n, n ≥ 5; and X = [x1, x2, x3, x4, Rseries, Voc] is a 
vector of the unknown parameters. The PSO algorithm is 
then designed to search for the optimal X to minimize the 
value of the following fitness function. 
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 Theoretically, the optimal X should make the fitness 
function value to be zero. In practice, once the value of P(X) 
is below a predefined small threshold, e.g., 10-6, the 
corresponding X can be treated as the optimal solution. From 
the optimal solution of X, the electrical impedances can be 
calculated from (8).  

The PSO algorithm searches for the optimal solution using 
a population of moving particles. Each particle has a position 
represented by a position vector (Xi) and a moving velocity 
represented by a velocity vector (Vi) in the problem space. 
The position of each particle represents a potential solution. 
Each particle keeps track of its coordinates in the problem 
space, which are associated with the individual best position 
(Xi,pbest) achieved by the particle so far. Furthermore, the best 
position among all the particles obtained so far in the 
population is kept track of by all particles as the global best 
position (Xgbest). The PSO algorithm is implemented in the 
following iterative step for internal parameter estimation of a 
battery: 
(i) Define the problem space with its boundaries extracted 

from off-line battery tests under various operating 
conditions. 

(ii) Initialize a population of particles with random positions 
and velocities in the problem space. 

(iii) Evaluate the fitness function. 
(iv) Compare each particle’s current position Xi with its 

Xi,pbest based on the fitness evaluation. If Xi is better than 
Xi,pbest, then replace Xi,pbest with Xi. 

(v) If Xi,pbest is updated, then compare the particle’s Xi,pbest 
with Xgbest based on the evaluation of the fitness function.   

        If Xi,pbest is better than Xgbest, then replace Xgbest with 
Xi,pbest. 

(vi) Compute each particle’s new velocity (V) and position at 
iteration k as follows: 
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     NikVkXkX iii ,,2,1),1()()1( ⋅⋅⋅=++=+        (12) 
(vii)  Repeat steps (iii)-(vi) until the stopping criterion is 

satisfied, e.g., an error threshold is reached or the 
maximum number of iterations is accomplished. The 
final value of Xgbest is the optimal solution of the problem. 

In (11), c1 and c2 are the cognition learning rate and social 
learning rate of particles, respectively; w is the inertial 
weight which decreases as the number of iteration increases; 
r1 and r2 are uniformly distributed random numbers between 
0 and 1; N is the number of particles in the swarm. The set 
of parameters for the PSO implementation of this paper are 
listed in TABLE I. 

Due to slow changes in the internal parameters, the final 
solution X in each execution of the PSO algorithm, instead of 
random numbers, will be used as the initial positions for the 
population of particles in the next execution of the PSO 
algorithm. This reduces the number of iterations to identify 
the optimal solution. Moreover, it is important to choose 
appropriate boundary conditions for position X and velocity 
V in the PSO algorithm. The internal electrical parameters 
extracted from off-line battery tests under various operating 
conditions will be used to set the boundary conditions for X 
and V. Especially, the adaptive boundary condition, shown in 



TABLE I  
PSO PARAMETERS 

Swarm 
Size (N) 

20 c1 2 w (start) 0.7 

Iteration 1000 c2 2 w (end) 0.1 

α1 0.198 α2 0.118 β1 0.188 

β2 0.104 ϕ 0.001   

 

 

TABLE II 
BOUNDARY CONDITION OF VOC 

iB(k) >0 
 

(Discharge) 

Voc_max(k) Vcell(k)+α1·sinh-1(icell(k)/irated) 

Voc_min(k) Vcell(k)+α2·sinh-1(icell(k)/irated) 

iB (k)<0 
 

(Charge) 

Voc_max(k) Vcell(k)+β1·sinh-1(icell(k)/irated) 

Voc_min(k) Vcell(k)+β2·sinh-1(icell(k)/irated) 

iB(k) =0 
 

(Rest) 

Voc_max(k) Voc_max(k-1) 

Voc_min(k) Voc_max(k-1)  

Voc_max(k) 
Vcell(k),        if Δ Vcell(k) < ϕ 

Voc_min(k) 

TABLE II, is proposed for Voc to improve the accuracy of 
parameter estimation, where Voc_max and Voc_min are the 
maximum and minimum Voc, respectively; ϕ, α and β are the 
rest, discharge and charge constants, respectively; irated is the 
rated current. The inverse hyperbolic sine function is used to 
express the transient voltage in terms of the current rate 
during charge and discharge [18].       

C. SOC Estimation and Compensation 

The enhanced Coulomb counting method based on (1) and 
(2) is an open-loop SOC estimation method. It may be 
subject to problems of a wrong initial SOC and accumulating 
estimation errors, leading to a wrong SOC estimation. To 
solve these problems, this paper proposes a closed-loop 
weighting SOC estimation method, which uses a SOC 
compensator to correct the error of the SOC (i.e., SOCi,EC) 
obtained from the enhanced Coulomb counting algorithm for 
each cell in the pack sequentially, as shown in Fig. 2. The 
corresponding equations are given by the following: 

)()1()()( ,,, kSOCWkSOCWkSOC ViECinewi ⋅−+⋅=      (14)       

                   )1()1( , −=− kSOCkSOC newii                   (15) 

where W is a variable weighting factor (0<W<1); SOCi,V is 
the SOC estimated from the open-circuit voltage (Vi,oc) of 
Cell i, which in turn is estimated from the electrical battery 
model by using the PSO algorithm and the measured cell 
current and terminal voltage. The SOC compensator uses the 
estimated Vi,oc and the SOCi,EC as the inputs. The Vi,oc is 
converted to the SOCi,V by using a SOC–Voc look-up table 
because Voc is highly related to the SOC. In practice, the 

SOC–Voc relationship can be obtained from laboratory 
experiments. The SOCi,V and SOCi,EC are multiplied by their 
weighting factors and then added together to generate a 
compensated SOC (i.e., SOCi,new). The SOCi,new is then used 
as the initial SOC (i.e., SOCi)  of the enhanced Coulomb 
counting algorithm to estimate the SOC in the next time step. 

The SOC compensator is executed periodically with a 
certain interval during operation or during a long relaxation 
period of the battery cell. The performance of the SOC 
compensator highly depends on the accuracy of the internal 
electrical parameters of the battery and the weighting factor 
W. The default value of W is one when only the enhanced 
Coulomb counting is used for SOC estimation. The value of 
W will be changed when the SOC compensator is used. In 
this paper, W is set to be 0.5 once the SOC compensator is 
activated. Moreover, when the battery is operated in a long-
time relaxation mode, the SOCi,V will be close to the real 
SOC. In this case, the weighting factor W will be set to be 
zero. When W is zero and the battery is operated in the 
charge/discharge mode again, the execution of the SOC 
compensator will be over, and W will be reset to be one. 

III. RESULTS 

The proposed electrical impedance and SOC estimation 
method is validated by simulation and experimental data for 
a four-cell polymer lithium-ion pack. The nominal capacity, 
nominal voltage, and cutoff voltage of a single cell are 860 
mAh, 3.7 V, and 3 V, respectively. The experimental data of 

 

Fig. 2.  The proposed closed-loop weighting SOC estimation algorithm. 

 

 
 

Fig. 3.  The experimental setup. 
 



the cell voltage and current are collected from a CADEX 
battery tester C8000 (shown in Fig. 3) under the ambient 
temperature. The proposed method shown in Fig. 1 is 
implemented in MATLAB/Simulink on a laptop computer 
(see Fig. 3). The measured cell voltage and current from the 
battery tester are used by the proposed method for real-time 
SOC and electrical impedance estimation for each individual 
battery cell. The electrical impedances of the electrical 
circuit battery model are first extracted offline for each 
battery cell by using the method described in [5]. These 
impedances are then used as the true values for comparison 

with those obtained from the proposed method in real time. 
Fig. 4(a)-(e) compare the impedances of the hybrid battery 

cell model estimated by using the proposed online parameter 
identification algorithm with the true impedances extracted 
offline for the four battery cells for a dynamic current cycle 
shown in Fig. 4(f). The parameter identification algorithm is 
executed 100 seconds sequentially for each cell. The results 
show that the parameter identification algorithm estimates 
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Fig. 4. Comparison of true and estimated impedances of the hybrid battery 

cell model for the four cells: (a) Rseries, (b) Rtransient_S, (c) Ctransient_S, (d) 
Rtransient_L, (e) Ctransient_L , and (f) the dynamic current cycle applied to the 

battery pack.  



the cell parameters fast and accurately.  
Next, the SOC estimation algorithm is investigated with a 

wrong initial SOC of 50% for all the cells in the proposed 
method; while the real initial SOCs of Cells 1, 2, 3 and 4 are 
90, 80, 70 and 60%, respectively. The multicell battery pack 
is operated with a dynamic current cycle as shown in Fig 4(f). 
The SOC compensator is executed 100 seconds sequentially 
for each cell to correct its SOC. Fig. 5 compares the SOCs 
estimated by the proposed method with those measured from 
the battery tester. The estimated SOC of each cell matches 
the measured value well although the initial SOC is set 
wrong in the proposed method. This result clearly shows that 
the proposed algorithm is robust to the error of initial SOC, 
which however is important to the accuracy of the traditional 
Coulomb counting method.  

IV. CONCLUSION 

This paper has proposed a novel hybrid model-based 
online SOC and electrical impedance estimation method for 
multicell lithium-ion batteries. The proposed method has 
been implemented in MATLAB/Simulink and validated by 
simulation and experimental results for a four-cell polymer 
lithium-ion battery pack. The proposed method can be used 
for power management, condition monitoring and diagnostics 
of batteries used in EVs and PHEVs. In addition to lithium-
ion batteries, the proposed method is applicable to other types 
of batteries. In the future work, hardware-in-the-loop tests for 
the proposed method will be conducted to validate it for real-
time EV and PHEV applications. 
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APPENDIX 

 Battery cell: pl-383562 2C; nominal voltage: 3.7 V; 
nominal capacity: 860 mAh; discharge cutoff voltage 
(Vcutoff): 3 V; charge cutoff voltage (Vover): 4.2 V; maximum 
discharge current: 2C (1.72 A). 
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Fig. 5.  Comparison of the estimated and measured SOCs for the four 

cells. 
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