25 research outputs found

    A standardised method for interpreting the association between mutations and phenotypic drug resistance inMycobacterium tuberculosis

    Get PDF
    A clear understanding of the genetic basis of antibiotic resistance in Mycobacterium tuberculosis is required to accelerate the development of rapid drug susceptibility testing methods based on genetic sequence. Raw genotype–phenotype correlation data were extracted as part of a comprehensive systematic review to develop a standardised analytical approach for interpreting resistance associated mutations for rifampicin, isoniazid, ofloxacin/levofloxacin, moxifloxacin, amikacin, kanamycin, capreomycin, streptomycin, ethionamide/prothionamide and pyrazinamide. Mutation frequencies in resistant and susceptible isolates were calculated, together with novel statistical measures to classify mutations as high, moderate, minimal or indeterminate confidence for predicting resistance. We identified 286 confidence-graded mutations associated with resistance. Compared to phenotypic methods, sensitivity (95% CI) for rifampicin was 90.3% (89.6–90.9%), while for isoniazid it was 78.2% (77.4–79.0%) and their specificities were 96.3% (95.7–96.8%) and 94.4% (93.1–95.5%), respectively. For second-line drugs, sensitivity varied from 67.4% (64.1–70.6%) for capreomycin to 88.2% (85.1–90.9%) for moxifloxacin, with specificity ranging from 90.0% (87.1–92.5%) for moxifloxacin to 99.5% (99.0–99.8%) for amikacin. This study provides a standardised and comprehensive approach for the interpretation of mutations as predictors of M. tuberculosis drug-resistant phenotypes. These data have implications for the clinical interpretation of molecular diagnostics and next-generation sequencing as well as efficient individualised therapy for patients with drug-resistant tuberculosis

    XMODULATION IN MICEAND MEN: IL-10 PRODUCING CELLS INBLOOD AND LYMPHOID TISSUE

    No full text
    Background: The human immune system provides remarkable protection from a plethora of pathogens, but can cause damage when activated for a prolonged time (as inpersistent infections) or against self (autoimmunity). Therefore, mechanisms of immune system downregulation and control are imperative. There is little data on how the immune system is controlled in healthy individuals. We recently described a novel population of white blood cells that constitutively produce the immunomodulatory cytokine interleukin-10 (IL-10). Our objective was to further delineate the distribution of these cells in human and mouse models, as well as potential triggers for interleukin-10 production in vitro. Methods: Human and animal protocols were reviewed and approved by the institutional ethics board and animal care facilities, and informed consent was obtained from all human donors. The ex vivo percentage of peripheral blood CD36^+IL-10^+ mononuclear cells was assessed by intracellular flow cytometry in 10 healthy individuals. IL-10 production after exposure to twoCD36 ligands, thrombospondin and oxidized low density lipoprotein (oxLDL) was measured at 8 hours. Peripheral blood mononuclear cells and splenocytes from BL/6 (n=5) and Balb/c (n=1) micewere assessed for CD36^+IL-10^+ cells ex vivo as well. Results: The percentage of CD36^+IL-10^+ cells in peripheral blood fromhealthy individuals ranges between 0.1% and 0.9%. The percentage was similar in mouse peripheral blood, with a range of 0.4%-1.1%. These cells were also found in mouse spleen at a higher frequency than peripherally (1.1-1.5%). Human CD36^+IL-10^+ cells have more IL-10 when exposed to thrombospondin, oxLDL. Conclusions: Our novel population of IL-10 producing cells is found not only in healthy humans, but also in lymphoid tissue and blood from pathogen free mice. This highlights the evolutionary conservation of the cell across species, and suggests an important homeostatic function. The physiologic ligands for CD36 are ubiquitous in circulation, and ourin vitro data suggests a link between CD36 ligation and IL-10 production. IL-10 is a known immune system modulator, and its production by these cells may help maintain homeostaticcontrol of the immune system

    Image1_Novel alleles in the era of next-generation sequencing-based HLA typing calls for standardization and policy.TIF

    No full text
    Next-Generation Sequencing (NGS) has transformed clinical histocompatibility laboratories through its capacity to provide accurate, high-throughput, high-resolution typing of Human Leukocyte Antigen (HLA) genes, which is critical for transplant safety and success. As this technology becomes widely used for clinical genotyping, histocompatibility laboratories now have an increased capability to identify novel HLA alleles that previously would not be detected using traditional genotyping methods. Standard guidelines for the clinical verification and reporting of novelties in the era of NGS are greatly needed. Here, we describe the experience of a clinical histocompatibility laboratory’s use of NGS for HLA genotyping and its management of novel alleles detected in an ethnically-diverse population of British Columbia, Canada. Over a period of 18 months, 3,450 clinical samples collected for the purpose of solid organ or hematopoietic stem cell transplantation were sequenced using NGS. Overall, 29 unique novel alleles were identified at a rate of ∼1.6 per month. The majority of novelties (52%) were detected in the alpha chains of class II (HLA-DQA1 and -DPA1). Novelties were found in all 11 HLA classical genes except for HLA-DRB3, -DRB4, and -DQB1. All novelties were single nucleotide polymorphisms, where more than half led to an amino acid change, and one resulted in a premature stop codon. Missense mutations were evaluated for changes in their amino acid properties to assess the potential effect on the novel HLA protein. All novelties identified were confirmed independently at another accredited HLA laboratory using a different NGS assay and platform to ensure validity in the reporting of novelties. The novel alleles were submitted to the Immuno Polymorphism Database-Immunogenetics/HLA (IPD-IMGT/HLA) for official allele name designation and inclusion in future database releases. A nationwide survey involving all Canadian HLA laboratories confirmed the common occurrence of novel allele detection but identified a wide variability in the assessment and reporting of novelties. In summary, a considerable proportion of novel alleles were identified in routine clinical testing. We propose a framework for the standardization of policies on the clinical management of novel alleles and inclusion in proficiency testing programs in the era of NGS-based HLA genotyping.</p

    Table1_Novel alleles in the era of next-generation sequencing-based HLA typing calls for standardization and policy.docx

    No full text
    Next-Generation Sequencing (NGS) has transformed clinical histocompatibility laboratories through its capacity to provide accurate, high-throughput, high-resolution typing of Human Leukocyte Antigen (HLA) genes, which is critical for transplant safety and success. As this technology becomes widely used for clinical genotyping, histocompatibility laboratories now have an increased capability to identify novel HLA alleles that previously would not be detected using traditional genotyping methods. Standard guidelines for the clinical verification and reporting of novelties in the era of NGS are greatly needed. Here, we describe the experience of a clinical histocompatibility laboratory’s use of NGS for HLA genotyping and its management of novel alleles detected in an ethnically-diverse population of British Columbia, Canada. Over a period of 18 months, 3,450 clinical samples collected for the purpose of solid organ or hematopoietic stem cell transplantation were sequenced using NGS. Overall, 29 unique novel alleles were identified at a rate of ∼1.6 per month. The majority of novelties (52%) were detected in the alpha chains of class II (HLA-DQA1 and -DPA1). Novelties were found in all 11 HLA classical genes except for HLA-DRB3, -DRB4, and -DQB1. All novelties were single nucleotide polymorphisms, where more than half led to an amino acid change, and one resulted in a premature stop codon. Missense mutations were evaluated for changes in their amino acid properties to assess the potential effect on the novel HLA protein. All novelties identified were confirmed independently at another accredited HLA laboratory using a different NGS assay and platform to ensure validity in the reporting of novelties. The novel alleles were submitted to the Immuno Polymorphism Database-Immunogenetics/HLA (IPD-IMGT/HLA) for official allele name designation and inclusion in future database releases. A nationwide survey involving all Canadian HLA laboratories confirmed the common occurrence of novel allele detection but identified a wide variability in the assessment and reporting of novelties. In summary, a considerable proportion of novel alleles were identified in routine clinical testing. We propose a framework for the standardization of policies on the clinical management of novel alleles and inclusion in proficiency testing programs in the era of NGS-based HLA genotyping.</p

    Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

    No full text
    AbstractSideroblastic anemias are acquired or inherited anemias that result in a decreased ability tosynthesize hemoglobin in red blood cells and result in the presence of iron deposits in themitochondria of red blood cell precursors. A common subtype of congenital sideroblasticanemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatmentfor SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupledwith iron chelation. The function of SLC25A38 is not known. Here we report that theSLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transportersrequired for the initiation of heme synthesis. To do so, we took advantage of the fact thatmitochondrial glycine has several roles beyond the synthesis of heme, including the synthesisof folate derivatives through the glycine cleavage system. The data were consistent withHem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25family member Ymc1, as a potential secondary mitochondrial glycine importer. Based onthese findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid(5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able torestore heme levels to normal in yeast cells lacking Hem25 function. While neither glycinenor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafishmodel, we determined that the addition of folate with glycine was able to restore hemoglobinlevels. This difference is likely due to the fact that yeast can synthesize folate, whereas inzebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerabilityof glycine and folate in humans, this study points to a potential novel treatment forSLC25A38 congenital sideroblastic anemia

    Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase

    Get PDF
    Drug-resistant tuberculosis poses a persistent public health threat. The ReSeqTB platform is a collaborative, curated knowledgebase, designed to standardize and aggregate global Mycobacterium tuberculosis complex (MTBC) variant data from whole genome sequencing (WGS) with phenotypic drug susceptibility testing (DST) and clinical data. We developed a unified analysis variant pipeline (UVP) ( https://github.com/CPTR-ReSeqTB/UVP ) to identify variants and assign lineage from MTBC sequence data. Stringent thresholds and quality control measures were incorporated in this open source tool. The pipeline was validated using a well-characterized dataset of 90 diverse MTBC isolates with conventional DST and DNA Sanger sequencing data. The UVP exhibited 98.9% agreement with the variants identified using Sanger sequencing and was 100% concordant with conventional methods of assigning lineage. We analyzed 4636 publicly available MTBC isolates in the ReSeqTB platform representing all seven major MTBC lineages. The variants detected have an above 94% accuracy of predicting drug based on the accompanying DST results in the platform. The aggregation of variants over time in the platform will establish confidence-graded mutations statistically associated with phenotypic drug resistance. These tools serve as critical reference standards for future molecular diagnostic assay developers, researchers, public health agencies and clinicians working towards the control of drug-resistant tuberculosis

    Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance knowledgebase

    Get PDF
    Drug-resistant tuberculosis poses a persistent public health threat. The ReSeqTB platform is a collaborative, curated knowledgebase, designed to standardize and aggregate global Mycobacterium tuberculosis complex (MTBC) variant data from whole genome sequencing (WGS) with phenotypic drug susceptibility testing (DST) and clinical data. We developed a unified analysis variant pipeline (UVP) (https://github.com/CPTR-ReSeqTB/UVP) to identify variants and assign lineage from MTBC sequence data. Stringent thresholds and quality control measures were incorporated in this open source tool. The pipeline was validated using a well-characterized dataset of 90 diverse MTBC isolates with conventional DST and DNA Sanger sequencing data. The UVP exhibited 98.9% agreement with the variants identified using Sanger sequencing and was 100% concordant with conventional methods of assigning lineage. We analyzed 4636 publicly available MTBC isolates in the ReSeqTB platform representing all seven major MTBC lineages. The variants detected have an above 94% accuracy of predicting drug based on the accompanying DST results in the platform. The aggregation of variants over time in the platform will establish confidence-graded mutations statistically associated with phenotypic drug resistance. These tools serve as critical reference standards for future molecular diagnostic assay developers, researchers, public health agencies and clinicians working towards the control of drug-resistant tuberculosis

    Cytosolic threonine aldolase is the main soruce of glycine for heme synthesis.

    No full text
    <p>A) Glycine can be synthesized in glucose grown yeast via three enzymes, Gly1 (threonine aldolase), and cytosolic (Shm2) and mitochondrial (Shm1) serine hydroxymethyltransferases. B) Yeast cells of the indicated genotypes were grown to mid-log phase and cells were processed for glycine and heme determination. Wild type glycine was 6.0 nmol/10<sup>8</sup> cells. C) Cells of the indicated genotypes were grown to mid-log phase and 1:10 serial dilutions plated on SD medium with no supplements.</p
    corecore