230 research outputs found

    ROS/TRPA1/CGRP signaling mediates cortical spreading depression

    Get PDF
    Abstract Objectives The transient receptor potential ankyrin A 1 (TRPA1) channel and calcitonin gene-related peptide (CGRP) are targets for migraine prophylaxis. This study aimed to understand their mechanisms in migraine by investigating the role of TRPA1 in cortical spreading depression (CSD) in vivo and exploring how reactive oxygen species (ROS)/TRPA1/CGRP interplay in regulating cortical susceptibility to CSD. Methods Immunohistochemistry was used for detecting TRPA1 expression. CSD was induced by K+ on the cerebral cortex, monitored using electrophysiology in rats, and intrinsic optical imaging in mouse brain slices, respectively. Drugs were perfused into contralateral ventricle of rats. Lipid peroxidation (malondialdehyde, MDA) analysis was used for indicating ROS level. Results TRPA1 was expressed in cortical neurons and astrocytes of rats and mice. TRPA1 deactivation by an anti-TRPA1 antibody reduced cortical susceptibility to CSD in rats and decreased ipsilateral MDA level induced by CSD. In mouse brain slices, H2O2 facilitated submaximal CSD induction, which disappeared by the antioxidant, tempol and the TRPA1 antagonist, A-967079; Consistently, TRPA1 activation reversed prolonged CSD latency and reduced magnitude by the antioxidant. Further, blockade of CGRP prolonged CSD latency, which was reversed by H2O2 and the TRPA1 agonist, allyl-isothiocyanate, respectively. Conclusions ROS/TRPA1/CGRP signaling plays a critical role in regulating cortical susceptibility to CSD. Inhibition ROS and deactivation of TRPA1 channels may have therapeutic benefits in preventing stress-triggered migraine via CGRP

    Membrane Potential Batch Normalization for Spiking Neural Networks

    Full text link
    As one of the energy-efficient alternatives of conventional neural networks (CNNs), spiking neural networks (SNNs) have gained more and more interest recently. To train the deep models, some effective batch normalization (BN) techniques are proposed in SNNs. All these BNs are suggested to be used after the convolution layer as usually doing in CNNs. However, the spiking neuron is much more complex with the spatio-temporal dynamics. The regulated data flow after the BN layer will be disturbed again by the membrane potential updating operation before the firing function, i.e., the nonlinear activation. Therefore, we advocate adding another BN layer before the firing function to normalize the membrane potential again, called MPBN. To eliminate the induced time cost of MPBN, we also propose a training-inference-decoupled re-parameterization technique to fold the trained MPBN into the firing threshold. With the re-parameterization technique, the MPBN will not introduce any extra time burden in the inference. Furthermore, the MPBN can also adopt the element-wised form, while these BNs after the convolution layer can only use the channel-wised form. Experimental results show that the proposed MPBN performs well on both popular non-spiking static and neuromorphic datasets. Our code is open-sourced at \href{https://github.com/yfguo91/MPBN}{MPBN}.Comment: Accepted by ICCV202

    RMP-Loss: Regularizing Membrane Potential Distribution for Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) as one of the biology-inspired models have received much attention recently. It can significantly reduce energy consumption since they quantize the real-valued membrane potentials to 0/1 spikes to transmit information thus the multiplications of activations and weights can be replaced by additions when implemented on hardware. However, this quantization mechanism will inevitably introduce quantization error, thus causing catastrophic information loss. To address the quantization error problem, we propose a regularizing membrane potential loss (RMP-Loss) to adjust the distribution which is directly related to quantization error to a range close to the spikes. Our method is extremely simple to implement and straightforward to train an SNN. Furthermore, it is shown to consistently outperform previous state-of-the-art methods over different network architectures and datasets.Comment: Accepted by ICCV202

    Identifying Obstructive Hypertrophic Cardiomyopathy from Nonobstructive Hypertrophic Cardiomyopathy: Development and Validation of a Model Based on Electrocardiogram Features

    Get PDF
    Background: The clinical presentation and prognosis of hypertrophic cardiomyopathy (HCM) are heterogeneous between nonobstructive HCM (HNCM) and obstructive HCM (HOCM). Electrocardiography (ECG) has been used as a screening tool for HCM. However, it is still unclear whether the features presented on ECG could be used for the initial classification of HOCM and HNCM. Objective: We aimed to develop a pragmatic model based on common 12-lead ECG features for the initial identification of HOCM/HNCM. Methods: Between April 1st and September 30th, 2020, 172 consecutive HCM patients from the International Cooperation Center for Hypertrophic Cardiomyopathy of Xijing Hospital were prospectively included in the training cohort. Between January 4th and February 30th, 2021, an additional 62 HCM patients were prospectively included in the temporal internal validation cohort. External validation was performed using retrospectively collected ECG data with definite classification (390 HOCM and 499 HNCM ECG samples) from January 1st, 2010 to March 31st, 2020. Multivariable backward logistic regression (LR) was used to develop the prediction model. The discrimination performance, calibration and clinical utility of the model were evaluated. Results: Of all 30 acquired ECG parameters, 10 variables were significantly different between HOCM and HNCM (all P < 0.05). The P wave interval and SV1 were selected to construct the model, which had a clearly useful C-statistic of 0.805 (0.697, 0.914) in the temporal validation cohort and 0.776 (0.746, 0.806) in the external validation cohort for differentiating HOCM from HNCM. The calibration plot, decision curve analysis, and clinical impact curve indicated that the model had good fitness and clinical utility. Conclusion: The pragmatic model constructed by the P wave interval and SV1 had a clearly useful ability to discriminate HOCM from HNCM. The model might potentially serve as an initial classification of HCM before referring patients to dedicated centers and specialists. Highlights What are the novel findings of this work? • Evident differences exist in the ECG presentations between HOCM and HNCM. • To the best of our knowledge, this study is the first piece of evidence to quantify the difference in the ECG presentations between HOCM and HNCM. • Based on routine 12-lead ECG data, a probabilistic model was generated that might assist in the initial classification of HCM patients

    Multi-scale integrative analyses identify THBS2+ cancer-associated fibroblasts as a key orchestrator promoting aggressiveness in early-stage lung adenocarcinoma.

    Get PDF
    Rationale: Subsets of patients with early-stage lung adenocarcinoma (LUAD) have a poor post-surgical course after curative surgery. However, biomarkers stratifying this high-risk subset and molecular underpinnings underlying the aggressive phenotype remain unclear. Methods: We integrated bulk and single-cell transcriptomics, proteomics, secretome and spatial profiling of clinical early-stage LUAD samples to identify molecular underpinnings that promote the aggressive phenotype. Results: We identified and validated THBS2, at multi-omic levels, as a tumor size-independent biomarker that robustly predicted post-surgical survival in multiple independent clinical cohorts of early-stage LUAD. Furthermore, scRNA-seq data revealed that THBS2 is exclusively derived from a specific cancer-associated fibroblast (CAF) subset that is distinct from CAFs defined by classical markers. Interestingly, our data demonstrated that THBS2 was preferentially secreted via exosomes in early-stage LUAD tumors with high aggressiveness, and its levels in the peripheral plasma associated with short recurrence-free survival. Further characterization showed that THBS2-high early-stage LUAD was characterized by suppressed antitumor immunity. Specifically, beyond tumor cells, THBS2+ CAFs mainly interact with B and CD8+ T lymphocytes as well as macrophages within tumor microenvironment of early-stage LUAD, and THBS2-high LUAD was associated with decreased immune cell infiltrates but increased immune exhaustion marker. Clinically, high THBS2 expression predicted poor response to immunotherapies and short post-treatment survival of patients. Finally, THBS2 recombinant protein suppressed ex vivo T cells proliferation and promoted in vivo LUAD tumor growth and distant micro-metastasis. Conclusions: Our multi-level analyses uncovered tumor-specific THBS2+ CAFs as a key orchestrator promoting aggressiveness in early-stage LUAD

    Synthesis of TiC nanotube arrays and their excellent supercapacitor performance

    Get PDF
    Nanostructured metal carbides have numerous applications in catalysis and energy storage. However, directional construction remains a significant challenge. In this work, a novel strategy for the direct synthesis of nanostructured metal carbides using nanostructured metal oxides as the precursor is developed. TiO2 nanotube arrays (TiO2 NTAs) can be successfully transformed into TiC nanotube arrays (TiC NTAs) through electro-deoxidation and carbonization reactions in a low-temperature molten salt. TiC NTAs have a highly oriented and ordered array structure, which shows the advantages of large specific surface area, direct electron transport, and good chemical stability. Here, TiC NTA electrodes and PVA-H3PO4 electrolyte gel were assembled into a flexible quasi-solid-state supercapacitor to characterize their energy storage performance. The results show that the TiC NTA electrodes exhibit a high areal capacitance of 53.3 mF cm−2, excellent cycling stability, and mechanical flexibility. Moreover, the energy densities can reach 4.6 μW h cm−2 at a power density of 78.9 μW cm−2. This work provides a new strategy for the directed synthesis of nanostructured metal carbides and demonstrates the energy storage application potential of TiC NTAs. It is expected that this work will contribute to the development of the synthesis and application of nanostructured metal carbides

    Cooperation-based sperm clusters mediate sperm oviduct entry and fertilization

    Get PDF
    Sperm cooperation has been observed in multiple species, yet its existence and benefit for reproductive success in mammals remains underexplored. Here, combining tissue-clearing with deep three-dimensional imaging, we demonstrate that postcopulatory mouse sperm congregate into unidirectional sperm cooperative clusters at the utero-tubal junction (UTJ), a key physical barrier for passage into the oviduct. Reducing sperm number in male mice by unilateral vasoligation or busulfan-treatment impairs sperm cluster formation and oviduct entry. Interestingly, sperm derived from Tex101-/- mouse has normal number, motility and morphology, yet they cannot form sperm cluster and fail to pass through the UTJ, which is at least in part due to the altered tail beating pattern of the Tex101-/- sperm. Moreover, Tex101-/- sperm's defect in oviduct entry cannot be rescued by the presence of wild-type (WT) sperm in the same uteri by sequential mating, suggesting sperm cooperative cluster as an essential behavior contributing to male fertility, which could be related to human infertility or subfertility

    Covariation in Plant Functional Traits and Soil Fertility within Two Species-Rich Forests

    Get PDF
    The distribution of plant species along environmental gradients is expected to be predictable based on organismal function. Plant functional trait research has shown that trait values generally vary predictably along broad-scale climatic and soil gradients. This work has also demonstrated that at any one point along these gradients there is a large amount of interspecific trait variation. The present research proposes that this variation may be explained by the local-scale sorting of traits along soil fertility and acidity axes. Specifically, we predicted that trait values associated with high resource acquisition and growth rates would be found on soils that are more fertile and less acidic. We tested the expected relationships at the species-level and quadrat-level (20×20 m) using two large forest plots in Panama and China that contain over 450 species combined. Predicted relationships between leaf area and wood density and soil fertility were supported in some instances, but the majority of the predicted relationships were rejected. Alternative resource axes, such as light gradients, therefore likely play a larger role in determining the interspecific variability in plant functional traits in the two forests studied
    • …
    corecore