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ABSTRACT
Background: The clinical presentation and prognosis of hypertrophic cardiomyopathy 
(HCM) are heterogeneous between nonobstructive HCM (HNCM) and obstructive 
HCM (HOCM). Electrocardiography (ECG) has been used as a screening tool for HCM. 
However, it is still unclear whether the features presented on ECG could be used for the 
initial classification of HOCM and HNCM.

Objective: We aimed to develop a pragmatic model based on common 12-lead ECG 
features for the initial identification of HOCM/HNCM.

Methods: Between April 1st and September 30th, 2020, 172 consecutive HCM patients 
from the International Cooperation Center for Hypertrophic Cardiomyopathy of Xijing 
Hospital were prospectively included in the training cohort. Between January 4th 
and February 30th, 2021, an additional 62 HCM patients were prospectively included 
in the temporal internal validation cohort. External validation was performed using 
retrospectively collected ECG data with definite classification (390 HOCM and 499 
HNCM ECG samples) from January 1st, 2010 to March 31st, 2020. Multivariable backward 
logistic regression (LR) was used to develop the prediction model. The discrimination 
performance, calibration and clinical utility of the model were evaluated.

Results: Of all 30 acquired ECG parameters, 10 variables were significantly different 
between HOCM and HNCM (all P < 0.05). The P wave interval and SV1 were selected to 
construct the model, which had a clearly useful C-statistic of 0.805 (0.697, 0.914) in the 
temporal validation cohort and 0.776 (0.746, 0.806) in the external validation cohort 
for differentiating HOCM from HNCM. The calibration plot, decision curve analysis, and 
clinical impact curve indicated that the model had good fitness and clinical utility.

Conclusion: The pragmatic model constructed by the P wave interval and SV1 had a 
clearly useful ability to discriminate HOCM from HNCM. The model might potentially 
serve as an initial classification of HCM before referring patients to dedicated centers 
and specialists.
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INTRODUCTION
Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiovascular 
diseases, with a large heterogeneity in its clinical presentation and prognosis. Obstructive 
hypertrophic cardiomyopathy (HOCM) accounts for two-thirds of HCM cases. It is a state in 
which the myocardium is highly contracted, causing left ventricular outflow tract obstruction 
(LVOTO) and leading to severe symptoms and adverse events [1, 2].

The prognosis and management of HOCM and nonobstructive HCM (HNCM) are different. 
Patients with HOCM usually experience a high overall risk of advanced heart failure (HF) and 
atrial fibrillation (AF) [1, 3], whereas the majority of HNCM patients are usually asymptomatic 
or have only mild symptoms. It has been considered that HNCM patients are associated with 
a low probability of HF or other major adverse consequences and do not require surgical 
interventions [4]. Septal reduction therapy (SRT) was recommended for symptomatic HOCM 
patients who progressed to drug refractory HF [5]. It has been suggested that referring HOCM 
patients to high-volume and high-expertise centers receiving SRT might lead to good outcomes 
with lower procedural mortality, lower costs and bleeding complications, and improvement in 
clinical discomforts [6, 7]. Thus, early classification of HNCM and HOCM is important for medical 
counseling, prompt referral, and even longitudinal clinical follow-up.

The diagnosis of HCM and the subsequent categorization of HOCM and HNCM relies mostly on the 
measurement of the maximum wall thickness (MWT) and left ventricular outflow tract gradient 
(LVOTG≥30 mmHg) by echocardiography (Echo) or stress Echo [8, 9]. However, instant, routine 
Echo in patients suspected to have HCM is less practical in rural or undeveloped regions due to 
the high cost, lack of infrastructure or well-trained cardiac sonographic specialists [10]. Most 
HCM patients have electrocardiographic abnormalities [11], and 12-lead electrocardiography 
(ECG) might offer an attractive noninvasive, low-cost, and convenient approach to screen for 
HCM. Generally, ECG screening has relied on particular features, such as left axis deviation, left 
ventricular high voltage, prominent Q waves, and T-wave inversions. Nevertheless, these single 
features have a less satisfied diagnostic performance [12, 13]. Prediction models based on ECG 
using traditional statistical methods [14] or artificial intelligence [15, 16] have achieved high 
accuracy in diagnosing or risk stratifying HCM. However, it is still unclear whether the features 
presented on ECG could be used for the initial classification of HNCM and HOCM.

In the current study, we constructed a practicable model based on the most common and 
easily available ECG features to distinguish HOCM from HNCM, with the aim to assist in the initial 
classification of HCM patients.

METHODS
STUDY POPULATION

Between April 1st and September 30th, 2020, 172 consecutive HCM patients—102 HOCM and 72 
HNCM patients—from the International Cooperation Center for Hypertrophic Cardiomyopathy 
of Xijing Hospital were prospectively included in the training cohort. Between January 4th and 
February 30th, 2021, an additional 62 HCM patients from the same center were prospectively 
included in the temporal internal validation cohort (30 HOCM and 32 HNCM patients). External 
validation was performed using retrospectively collected ECG data with definite classification 
of HOCM or HNCM (390 HOCM and 499 HNCM ECG samples) from Xijing Hospital by the end of 

HIGHLIGHTS

What are the novel findings of this work?

•	 Evident differences exist in the ECG presentations between HOCM and HNCM.

•	 �To the best of our knowledge, this study is the first piece of evidence to quantify the 
difference in the ECG presentations between HOCM and HNCM.

•	 �Based on routine 12-lead ECG data, a probabilistic model was generated that might 
assist in the initial classification of HCM patients.
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March 2020. The study flowchart is shown in Figure 1. Patients who had previously received 
an interventricular reduction procedure, had a pacemaker with pacing rhythm, had persistent 
atrial fibrillation (AF), had bundle branch block (BBB), or had missing ECG data were excluded. 
The enrolled HCM participants predominantly came from Northwest, Central, Northern, and 
Eastern China (Supplemental Figure S1).

The research protocol was approved by the ethics committee of Xijing Hospital, and the 
requirement for written informed consent was waived by the institutional review board. The 
study was performed in accordance with the local laws and the regulations of Xijing Hospital, 
and the study complied with the Declaration of Helsinki.

ELECTROCARDIOGRAM EVALUATION

All participants underwent routine 12-lead ECG in the supine position at a sampling rate of 500 
Hz, an amplitude of 10 mm/mv and a speed of 25 mm/s. The ECG features were measured 
automatically by the computer, and these data were checked independently by two experienced 
ECG reviewers blinded to the clinical details [14].

A total of 30 common ECG parameters were acquired, including the mean heart rate (HR), 
P wave duration, intervals of PR, QT and the corrected QT (QTc), abnormal Q wave, T wave 
inversion (TWI), and the amplitudes of the R and S waves in all precordial leads (V1–V6) and 
in limb leads I, III, and aVL (expressed as “R/S+Lead”). The amplitudes of RV5 + SV1 (RV5SV1, 
Sokolov–Lyon index), RaVL + SV3 (RaVLSV3, Cornell index), and RI + SIII (RISIII) were calculated 
for reflecting pathological high LV wall voltage, and the amplitudes of the R and S waves in 
leads V1–4, reflecting interventricular septum (IVS) hypertrophy, were also included.

ECHOCARDIOGRAPHY ACQUISITION

All subjects underwent a transthoracic two-dimensional and Doppler Echo that was 
independently performed by two experienced cardiac sonographers. A maximum LVOTG 
(LVOTGmax) of ≥ 30 mmHg is classified as HOCM; conversely, a rest and stress LVOTGmax < 30 
mmHg is HNCM [17, 18].

All the echocardiographic and Doppler measurements were averaged from three cardiac 
cycles, and the measurements included the biatrial dimension, left ventricular end-systolic 
volume (ESV), left ventricular end-diastolic volume (EDV), left ventricular ejection fraction 
(LVEF), left ventricular outflow tract pressure gradient (LVOTG), and maximum left ventricular 
wall thickness (MWT). Tissue Doppler signals were collected from the mitral inflow and mitral 

Figure 1 Study flow chart.

AF, atrial fibrillation; PM, 
pacemaker; BBB, bundle 
branch block; HCM, 
hypertrophic cardiomyopathy; 
HOCM, obstructive 
hypertrophic cardiomyopathy; 
HNCM, non-obstructive 
hypertrophic cardiomyopathy; 
LR, logistic regression.
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annulus tissue, the early (E) and late (A) diastolic mitral inflow velocity; the early (E’) and late 
(A’) diastolic mitral annular tissue velocity were recorded at 100 mm/s, respectively [19]. E/A 
and E/E’ were calculated to reflect the left ventricular diastolic function. The SAM sign, that is 
the forward motion of the mitral valve during systole, is an abnormal waveform of the mitral 
valve leaflet removed to the ventricular septum during systole. All the above procedures were in 
accordance with the guidelines of the American Society of Echocardiography and the European 
Society for the Quantification of Cardiac Chambers in Adult Echocardiography [20].

STATISTICAL ANALYSIS

The sample size was derived based on an attempt to include all available samples during 
the study interval, and no power calculation was performed in advance. Categorical 
variables were expressed as the frequency and percentage. Normally distributed continuous 
variables were expressed as the mean with standard deviations (SD) or median [25th and 75th 
percentiles], depending on their distribution. Between groups comparisons, including t test and 
nonparametric Mann-Whitney U tests, were performed as appropriate for continuous variables, 
and Fisher’s exact tests were used for categorical variables.

Univariable and multivariable logistic regression (LR) analyses with backward stepwise-
regression were used to screen variables and construct the model. The discrimination accuracy 
was quantified by receiver operating characteristic (ROC) curves using the C-statistic. According 
to previous literature [21], a C-statistic greater than 0.75 reflects a clearly useful discrimination; 
C-statistic less than 0.60 reflects poor discrimination; 0.60 to 0.75, possibly helpful discrimination. 
A calibration curve with the R package ‘CalibrationCurves’ was used to assess the goodness-of-
fit of the model. Decision curve analysis (DCA) and clinical impact curve (CIC) analysis with the 
R package ‘rmda’ was conducted to assess the clinical effectiveness of the model. For any given 
patient’s probability threshold, the DCA curve with the highest benefit score at that threshold 
is the best choice [22]. An online browser-based calculator (http://121.36.159.143:9999/hocm.
do) was generated accordingly.

All statistical analyses were carried out using R 3.6.1 software and SPSS 26.0; a two-tailed P 
value < 0.05 was considered to be statistically significant.

RESULTS
BASELINE CHARACTERISTICS

Of the total 234 prospectively enrolled participants, 172 were included in the training cohort 
and the remaining 62 participants were included in the temporal validation cohort. The 
baseline characteristics were presented in Table 1. The median ages were 47 and 46 years in 
HOCM and HNCM group, respectively, and males accounted for more than 60% of the patients 
in both groups. There was no significant difference in the diameters of right atrium (RA), end-
diastolic volume (EDV), end-systolic volume (ESV), left-ventricular ejection fraction (LVEF), and 
E/A between the HOCM and HNCM groups (all P > 0.05). The HOCM group had larger left atrium 
dimension (LAD), maximal wall thickness (MWT), LVOTG, E/E’ and more positive systolic anterior 
motion (SAM) sign (all P < 0.05).

ECG PARAMETERS

Among the total 30 obtained ECG variables, compared with HNCM, HOCM was associated 
with significantly larger P wave interval and higher amplitudes in SV1, RI, RaVL, SV2, SV5, SV6, 
RV5SV1, RISIII, and SV1V2 (all P < 0.05). There was no significant difference in the other 20 ECG 
variables (Table 2).

Selection of the predictors and construction of the HOCM model 
All the above 10 ECG variables with statistical significance were incorporated into the univariable 
and multivariable LR with backward stepwise selection (enter 0.1, removal 0.01). Two variables, 
P wave interval (P) and the amplitude of the S wave in lead V1 (SV1), were found to be 
independent predictors of HOCM (Table 3). The formula of the model is presented as follows:

= − + +Y 8.135 0.068*P 0.930*SV1

http://121.36.159.143:9999/hocm.do
http://121.36.159.143:9999/hocm.do
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THE CALIBRATION AND DISCRIMINATION PERFORMANCE OF THE MODEL

Calibration curves were generated to evaluate the fitness of the model. The calibration plots 
presented slopes of 1.00 (0.65~1.35), 1.14 (0.49, 1.79) and 0.82 (0.69, 0.95), intercepts 
of 0.00 (–0.35~0.35), 0.04 (–0.53, 0.60) and –0.40 (–0.55, –0.24) in the training, temporal, 
and external validation cohorts (Figure 2A-C), respectively. The model had a clearly 
useful C-statistic of 0.786 (0.718–0.854) in the training cohort, 0.805 (0.697–0.914) in the 
temporal validation cohort, and 0.776 (0.746–0.806) in the external validation cohort for 
differentiating HOCM from HNCM (Figure 2D-F). When the cutoff was set at 0.53 based 
on the Youden index, the sensitivity, specificity, and accuracy were 0.80, 0.72, and 0.71, 
respectively.

THE CORRELATION BETWEEN LVOTG AND THE PREDICTION SCORE VALUE

A scatter plot was used to illustrate the association between LVOTG (stress echo) and the 
prediction score value (Figure 3). We found that LVOTG had a linear relationship (P < 0.001) with 
the prediction score value (LVOTG = 53.2 + 20.6*score per 1 unit). The risk stratification strata 
are presented in Figure 3. In the ‘green zone’ (the prediction score value < –0.75), the probability 
of HOCM was 0%, whereas in the ‘yellow zone’ (the prediction score value ranged from –0.75 
to 0.53) and ‘red zone’ (the prediction score value > 0.53), the probability of HOCM was 46.4% 
and 76.3%, respectively.

VARIABLES UNIVARIABLE ANALYSIS MULTIVARIABLE ANALYSIS

COEFFICIENT OR (95% CI) P COEFFICIENT OR (95% CI) P 

RaVL 0.36 1.43 (0.88, 2.31) 0.150

SV1V2 0.34 1.40 (1.17, 1.68) <0.001

RⅠSⅢ 0.25 1.29 (0.97, 1.71) 0.081

SV6 –0.48 0.62 (0.34, 1.13) 0.116

RⅠ 0.73 2.07 (1.26, 3.41) <0.001

RV5SV1 0.31 1.37 (1.14, 1.65) 0.001

SV2 0.35 1.42 (1.06, 1.90) 0.017

SV5 –0.47 0.63 (0.41, 0.96) 0.032

P 0.07 1.07 (1.04, 1.11) <0.001 0.068 1.07 (1.04, 1.11) <0.001

SV1 0.91 2.49 (1.67, 3.72) <0.001 0.930 2.54 (1.65, 3.89) <0.001

Constant –8.135

Table 3 Univariable and 
multivariable logistic 
regression analyses.

Figure 2 The calibration and 
ROC curve of the model in 
the training, temporal, and 
external validation cohorts. 

Calibration plots between 
the predicted and observed 
HOCM patients in the training 
(A), temporal (B), and external 
validation (C) cohorts. The 
45° blue line represents a 
perfect prediction, and the red 
line represents the predictive 
performance of the model. 
ROC curves of the training (D), 
temporal (E), and external (F) 
validation cohorts.
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THE UTILITY OF THE MODEL FOR ASSESSING HOCM PROBABILITY

Decision curve analysis (DCA) was used to estimate the net benefits of the developed model at 
different thresholds, with the probability thresholds on the horizontal axis and the net benefit 
scores on the vertical axis. The model could gain more net benefits than either ‘none’ or ‘all’ 
HOCM patients recognized when the threshold probability was between 20% and 90%, which 
indicates a high cost-efficient net and potential for clinical application (Supplemental Figure 2A). 
Furthermore, clinical impact curve (CIC) was utilized to demonstrate the clinical effectiveness 
of the model and to predict the probability of HOCM among 1000 samples. When the threshold 
probability was greater than 80%, the predictive number of HOCM was approximately the same 
as the actual number (Supplemental Figure 2B).

EXAMPLES ILLUSTRATION

Two case scenarios are shown in Figure 4. Case 1 was a 58-year-old male patient with 
chest discomfort during activity. ECG showed that the patient had a sinus rhythm 
with a P wave interval of 96 ms, SV1 of 1.6 mv, and TWI in precordial leads of V2–V5 
(Figure 4A). Our previous calculator, which could be used to screen for HCM/non-HCM, 
(http://121.36.159.143:9999/hcm.do) indicated that the patient had a high probability of 
HCM, and the present model further indicated a low probability of HOCM (Figure 4B). After 
examination by Echo, the patient was diagnosed as HNCM with a MWT of 21 mm and 
LVOTGmax of 12 mmHg (Figure 4C). Finally, the patient was prescribed β-blockers. Case 2 was 

Figure 3 The relationship 
between LVOTG and the 
prediction score value.

Figure 4 Examples illustration.

A, The ECG of the patient 
from case 1 (HNCM); B, the 
prediction result of case 1 
with a low HOCM probability; 
C, Peak LVOTG (12 mmHg) of 
the patient from case 1; D, The 
ECG of the patient from case 2 
(HOCM); E, the prediction result 
of case 2 with a high HOCM 
probability; F, Peak LVOTG 
(92 mmHg) of the patient 
from case 2.

http://121.36.159.143:9999/hcm.do
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a 40-year-old male with a family history of HCM. ECG showed the patient had sinus rhythm 
with a P wave interval of 108 ms, SV1 of 2.5 mv, and TWI in the inferior and precordial leads 
(Figure 4D). The prediction model suggested a high HCM probability with LVOT obstruction 
(Figure 4E). The patient was referred to our HCM center, and the Echo showed a MWT of 
26 mm and a LVOTGmax of 92 mmHg (Figure 4F). The patient was diagnosed with HOCM 
and received the SRT procedure by percutaneous intramyocardial septal radiofrequency 
ablation [23].

DISCUSSION
In this study, we found that there are differences in the ECG presentations between HOCM 
and HNCM. To the best of our knowledge, this study is the first piece of evidence to quantify 
the difference in ECG presentations between HOCM and HNCM, and a prediction model was 
constructed to categorize these two subtypes of HCM.

Surface 12-leads ECG is a ubiquitous and less resource-intensive approach in clinical practice. 
Studies have suggested that prediction models based on ECG can achieve high accuracy in 
detecting HCM and have proposed that patients who are suspected of having HCM should 
undergo routine ECG, which could reflect the morphology and function of the heart [24].

The HOCM and HNCM are the two subtypes of HCM and are associated with distinct prognosis 
and treatment strategies. A previous study [25] showed that there were more abnormal ECG 
presentations in HOCM than in HNCM; the ECG parameters reflected left ventricular hypertrophy 
(RV5, RV6, SV1, SV2, ST-T change, etc.), and left atrial abnormalities were also more commonly 
presented in HOCM than in HNCM. Recently, researchers reported an ECG model using artificial 
intelligence for the assessment of disease status and treatment response in HOCM [26]. 
However, it is still debatable whether an abnormal ECG could to some extent reflect LVOTG 
assessed by Echo. In addition, it is still unclear whether the features presented on ECG could be 
used for the initial classification of HOCM and HNCM. In this study, a feasible model consisting 
of the P wave interval and SV1 showed clearly useful discrimination of HOCM from HNCM, and 
we found that the prediction risk score was associated with LVOTG, which might be used to 
reflect LVOTG.

In the current formula, SV1 was included to predict HOCM/HNCM. The increase of SV1, the 
R-wave amplitude in the leads facing the left ventricle (I, aVL, V5 and V6), and the deepening 
of the S-wave amplitude in the leads V2/V3 were considered as ECG markers reflecting left 
ventricular hypertrophy (LVH) [27, 28]. However, it has been suggested that these left ventricular 
hypertrophy markers alone were not associated with a higher LVOTG, and that these markers 
had poor discrimination ability for differentiating HOCM from HNCM [25].

Similarly, it has also been reported that the AUC of the ROC curve for left ventricular hypertrophy 
by the ECG voltage criteria alone was only 0.675 [29]. It suggested a ‘possibly helpful’ 
discrimination ability (AUC: 0.60–0.75) for severe aortic stenosis (AS) detection according to 
the guides of discrimination and calibration of clinical prediction models [21]. In our study, the 
amplitudes of the ECG markers traditionally used for indicating left ventricular hypertrophy 
(RI, RaVL, SV1, SV2, RV5SV1, RISIII, and SV1V2) were also all higher in HOCM than in HNCM. 
However, we found that SV1 was the strongest predictor among these variables in the logistic 
regression model.

The P wave interval was also incorporated into the prediction model. The P wave interval has 
been recognized to be correlated with the left atrial volume, and a prolonged P wave interval 
is associated with delayed interatrial conduction [30–33]. Compared to HNCM, the prolonged 
P wave interval showed in the HOCM group could be explained by the fact that HOCM patients 
typically have more severe impaired diastolic function and atrial dysfunction [34, 35]. 
Concordantly, we observed that left atrial dimension assessed by Echo was also larger in HOCM 
than in HNCM.

The diagnosis of HOCM relies on the measurement of LVOTG by Echo. However, the LVOTG was 
not measured routinely, and it might not be accurately measured by less well-trained medical 
staff. Furthermore, the variability of LVOTG was reported to be as high as 49.0 mmHg in the 
absence of provocative maneuvers or interventions, which may result in discrepant classification 
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[36, 37]. A 12-lead ECG could offer a noninvasive, low-cost, and rapid means of screening 
for cardiovascular diseases. It has been suggested that the increase of SV1 was significantly 
reduced by 90% after HOCM patients who received intramyocardial radiofrequency ablation 
procedure to alleviate LVOTG [38]. Similarly, based on the 12-lead ECG, a deep learning-based 
algorithm was verified with high accuracy for severe AS (mean gradient pressure 32 mmHg) 
screening [39]. Another study also reported that AI-based ECG could mirror the decreasing 
trends over time in LVOTG (>100 mmHg pretreatment to less than 30 mmHg until the end of 
the study) for HOCM patients receiving mavacamten [26]. Such evidence indicates that ECG 
abnormalities may be associated with LVOTG. However, the precise features that the AI sees 
are obscure, AI needs advanced infrastructures, and the model may not be accessible for 
everyone, especially in undeveloped regions or communities.

In the current study, in virtue of the classical statistical approach, we found that the LVOTG had 
a linear relationship with the score of the prediction model, and the model may be regarded as 
a potential tool to ‘translate’ ECG features to LVOTG without dedicated instrument.

LIMITATIONS

First, the participants enrolled in the current study were from a single center and were all 
Chinese. Further external validation using participants from multiple centers and a population 
with more heterogeneity is needed. Second, the variables included in the formula of the model 
focused only on those parameters that are commonly assessed in clinical practice to increase 
the simplicity and applicability of the model; thus, some important but less frequently used 
features might have been omitted. Third, although some researchers reported that ECG was 
correlated with the HCM phenotype rather than the genotype [40], the effects of the genotype 
of HCM patients was not taken into consideration.

CONCLUSION
There are differences in the ECG presentations between HOCM and HNCM. The pragmatic model 
constructed by the commonly used parameters of P wave interval and SV1 had ‘clearly useful’ 
discrimination of the HCM subtypes. Such a model might assist the initial classification of 
suspected HCM patients and has potential in the follow-up of disease progression or longitudinal 
monitoring of treatment response.

ABBREVIATIONS
AF	 Atrial fibrillation

BBB	 Bundle branch block

CI	 Confidence intervals

CIC	 Clinical impact curve

DCA	 Decision curve analysis

ECG	 Electrocardiogram

Echo	 Echocardiography

EDV	 End-diastolic volume

ESV	 End-systolic volume

HCM	 Hypertrophic cardiomyopathy

HNCM	 Nonobstructive HCM

HOCM	 Obstructive HCM

LAD	 Left atrium dimension

LR	 Logistic regression

LV	 Left ventricular
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LVEF	 Left ventricular ejection fraction

LVH	 Left ventricular hypertrophy

LVOTG	 Left ventricular outflow tract gradient

LVOTO	 Left ventricular outflow obstruction

MWT	 Maximum wall thickness

RA	 Right atrium

ROC	 Receiver operator characteristic

RV5SV1	 The sum amplitude of R wave in lead V5 And S wave in lead V1

SAM	 Systolic anterior motion

SRT	 Septal reduction therapy

SV1	 The amplitude of S Wave in Lead V1
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