188 research outputs found
Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas
We employ Navier-Stokes granular hydrodynamics to investigate the long-time
behavior of clustering instability in a freely cooling dilute granular gas in
two dimensions. We find that, in circular containers, the homogeneous cooling
state (HCS) of the gas loses its stability via a sub-critical pitchfork
bifurcation. There are no time-independent solutions for the gas density in the
supercritical region, and we present analytical and numerical evidence that the
gas develops thermal collapse unarrested by heat diffusion. To get more
insight, we switch to a simpler geometry of a narrow-sector-shaped container.
Here the HCS loses its stability via a transcritical bifurcation. For some
initial conditions a time-independent inhomogeneous density profile sets in,
qualitatively similar to that previously found in a narrow-channel geometry.
For other initial conditions, however, the dilute gas develops thermal collapse
unarrested by heat diffusion. We determine the dynamic scalings of the flow
close to collapse analytically and verify them in hydrodynamic simulations. The
results of this work imply that, in dimension higher than one, Navier-Stokes
hydrodynamics of a dilute granular gas is prone to finite-time density blowups.
This provides a natural explanation to the formation of densely packed clusters
of particles in a variety of initially dilute granular flows.Comment: 18 pages, 19 figure
Formation and evolution of density singularities in hydrodynamics of inelastic gases
We use ideal hydrodynamics to investigate clustering in a gas of
inelastically colliding spheres. The hydrodynamic equations exhibit a new type
of finite-time density blowup, where the gas pressure remains finite. The
density blowups signal formation of close-packed clusters. The blowup dynamics
are universal and describable by exact analytic solutions continuable beyond
the blowup time. These solutions show that dilute hydrodynamic equations yield
a powerful effective description of a granular gas flow with close-packed
clusters, described as finite-mass point-like singularities of the density.
This description is similar in spirit to the description of shocks in ordinary
ideal gas dynamics.Comment: 4 pages, 3 figures, final versio
Multi-Dimensional Simulations of the Accretion-Induced Collapse of White Dwarfs to Neutron Stars
We present 2.5D radiation-hydrodynamics simulations of the accretion-induced
collapse (AIC) of white dwarfs, starting from 2D rotational equilibrium
configurations of a 1.46-Msun and a 1.92-Msun model. Electron capture leads to
the collapse to nuclear densities of these cores within a few tens of
milliseconds. The shock generated at bounce moves slowly, but steadily,
outwards. Within 50-100ms, the stalled shock breaks out of the white dwarf
along the poles. The blast is followed by a neutrino-driven wind that develops
within the white dwarf, in a cone of ~40deg opening angle about the poles, with
a mass loss rate of 5-8 x 10^{-3} Msun/yr. The ejecta have an entropy on the
order of 20-50 k_B/baryon, and an electron fraction distribution that is
bimodal. By the end of the simulations, at >600ms after bounce, the explosion
energy has reached 3-4 x 10^{49}erg and the total ejecta mass has reached a few
times 0.001Msun. We estimate the asymptotic explosion energies to be lower than
10^{50}erg, significantly lower than those inferred for standard core collapse.
The AIC of white dwarfs thus represents one instance where a neutrino mechanism
leads undoubtedly to a successful, albeit weak, explosion.
We document in detail the numerous effects of the fast rotation of the
progenitors: The neutron stars are aspherical; the ``nu_mu'' and anti-nu_e
neutrino luminosities are reduced compared to the nu_e neutrino luminosity; the
deleptonized region has a butterfly shape; the neutrino flux and electron
fraction depend strongly upon latitude (a la von Zeipel); and a quasi-Keplerian
0.1-0.5-Msun accretion disk is formed.Comment: 25 pages, 19 figures, accpeted to ApJ, high resolution of the paper
and movies available at http://hermes.as.arizona.edu/~luc/aic/aic.htm
Competition and Selection Among Conventions
In many domains, a latent competition among different conventions determines
which one will come to dominate. One sees such effects in the success of
community jargon, of competing frames in political rhetoric, or of terminology
in technical contexts. These effects have become widespread in the online
domain, where the data offers the potential to study competition among
conventions at a fine-grained level.
In analyzing the dynamics of conventions over time, however, even with
detailed on-line data, one encounters two significant challenges. First, as
conventions evolve, the underlying substance of their meaning tends to change
as well; and such substantive changes confound investigations of social
effects. Second, the selection of a convention takes place through the complex
interactions of individuals within a community, and contention between the
users of competing conventions plays a key role in the convention's evolution.
Any analysis must take place in the presence of these two issues.
In this work we study a setting in which we can cleanly track the competition
among conventions. Our analysis is based on the spread of low-level authoring
conventions in the eprint arXiv over 24 years: by tracking the spread of macros
and other author-defined conventions, we are able to study conventions that
vary even as the underlying meaning remains constant. We find that the
interaction among co-authors over time plays a crucial role in the selection of
them; the distinction between more and less experienced members of the
community, and the distinction between conventions with visible versus
invisible effects, are both central to the underlying processes. Through our
analysis we make predictions at the population level about the ultimate success
of different synonymous conventions over time--and at the individual level
about the outcome of "fights" between people over convention choices.Comment: To appear in Proceedings of WWW 2017, data at
https://github.com/CornellNLP/Macro
Magnetically-driven explosions of rapidly-rotating white dwarfs following Accretion-Induced Collapse
We present 2D multi-group flux-limited diffusion magnetohydrodynamics (MHD)
simulations of the Accretion-Induced Collapse (AIC) of a rapidly-rotating white
dwarf. We focus on the dynamical role of MHD processes after the formation of a
millisecond-period protoneutron star. We find that including magnetic fields
and stresses can lead to a powerful explosion with an energy of a few Bethe,
rather than a weak one of at most 0.1 Bethe, with an associated ejecta mass of
~0.1Msun, instead of a few 0.001Msun. The core is spun down by ~30% within
500ms after bounce, and the rotational energy extracted from the core is
channeled into magnetic energy that generates a strong magnetically-driven
wind, rather than a weak neutrino-driven wind. Baryon loading of the ejecta,
while this wind prevails, precludes it from becoming relativistic. This
suggests that a GRB is not expected to emerge from such AICs during the early
protoneutron star phase, except in the unlikely event that the massive white
dwarf has sufficient mass to lead to black hole formation. In addition, we
predict both negligible 56Ni-production (that should result in an
optically-dark, adiabatically-cooled explosion) and the ejection of 0.1Msun of
material with an electron fraction of 0.1-0.2. Such pollution by neutron-rich
nuclei puts strong constraints on the possible rate of such AICs. Moreover,
being free from ``fallback,'' such highly-magnetized millisecond-period
protoneutron stars may later become magnetars, and the magnetically-driven
winds may later transition to Poynting-flux-dominated, relativistic winds,
eventually detectable as GRBs at cosmological distances. However, the low
expected event rate of AICs will constrain them to be, at best, a small subset
of GRB and/or magnetar progenitors.Comment: 16 pages, 8 figures, paper accepted to ApJ; High resolution version
available at http://hermes.as.arizona.edu/~luc/aic_mhd/aic_mhd.htm
Shock Breakout from Type Ia Supernova
The mode of explosive burning in Type Ia SNe remains an outstanding problem.
It is generally thought to begin as a subsonic deflagration, but this may
transition into a supersonic detonation (the DDT). We argue that this
transition leads to a breakout shock, which would provide the first unambiguous
evidence that DDTs occur. Its main features are a hard X-ray flash (~20 keV)
lasting ~0.01 s with a total radiated energy of ~10^{40} ergs, followed by a
cooling tail. This creates a distinct feature in the visual light curve, which
is separate from the nickel decay. This cooling tail has a maximum absolute
visual magnitude of M_V = -9 to -10 at approximately 1 day, which depends most
sensitively on the white dwarf radius at the time of the DDT. As the thermal
diffusion wave moves in, the composition of these surface layers may be
imprinted as spectral features, which would help to discern between SN Ia
progenitor models. Since this feature should accompany every SNe Ia, future
deep surveys (e.g., m=24) will see it out to a distance of approximately 80
Mpc, giving a maximum rate of ~60/yr. Archival data sets can also be used to
study the early rise dictated by the shock heating (at about 20 days before
maximum B-band light). A similar and slightly brighter event may also accompany
core bounce during the accretion induced collapse to a neutron star, but with a
lower occurrence rate.Comment: Submitted for publication in The Astrophysical Journal on June 12,
2009; 7 pages, 5 figure
Patterns and Collective Behavior in Granular Media: Theoretical Concepts
Granular materials are ubiquitous in our daily lives. While they have been a
subject of intensive engineering research for centuries, in the last decade
granular matter attracted significant attention of physicists. Yet despite a
major efforts by many groups, the theoretical description of granular systems
remains largely a plethora of different, often contradicting concepts and
approaches. Authors give an overview of various theoretical models emerged in
the physics of granular matter, with the focus on the onset of collective
behavior and pattern formation. Their aim is two-fold: to identify general
principles common for granular systems and other complex non-equilibrium
systems, and to elucidate important distinctions between collective behavior in
granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb
pdf) avaliable at
http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community
responce is appreciated. Comments/suggestions send to [email protected]
Thermonuclear Burning Regimes and the Use of SNe Ia in Cosmology
The calculations of the light curves of thermonuclear supernovae are carried
out by a method of multi-group radiation hydrodynamics. The effects of spectral
lines and expansion opacity are taken into account. The predictions for UBVI
fluxes are given. The values of rise time for B and V bands found in our
calculations are in good agreement with the observed values. We explain why our
results for the rise time have more solid physical justification than those
obtained by other authors. It is shown that small variations in the chemical
composition of the ejecta, produced in the explosions with different regimes of
nuclear burning, can influence drastically the light curve decline in the B
band and, to a lesser extent, in the V band. We argue that recent results on
positive cosmological constant Lambda, found from the high redshift supernova
observations, could be wrong in the case of possible variations of the
preferred mode of nuclear burning in the earlier Universe.Comment: 20 pages, 5 figures, presented at the conference "Astronomy at the
Eve of the New Century", Puschino, May 17-22, 1999. A few references and a
table added, typos correcte
Development of intuitive rules: Evaluating the application of the dual-system framework to understanding children's intuitive reasoning
This is an author-created version of this article. The original source of publication is Psychon Bull Rev. 2006 Dec;13(6):935-53
The final publication is available at www.springerlink.com
Published version: http://dx.doi.org/10.3758/BF0321390
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
- âŠ