188 research outputs found

    Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas

    Full text link
    We employ Navier-Stokes granular hydrodynamics to investigate the long-time behavior of clustering instability in a freely cooling dilute granular gas in two dimensions. We find that, in circular containers, the homogeneous cooling state (HCS) of the gas loses its stability via a sub-critical pitchfork bifurcation. There are no time-independent solutions for the gas density in the supercritical region, and we present analytical and numerical evidence that the gas develops thermal collapse unarrested by heat diffusion. To get more insight, we switch to a simpler geometry of a narrow-sector-shaped container. Here the HCS loses its stability via a transcritical bifurcation. For some initial conditions a time-independent inhomogeneous density profile sets in, qualitatively similar to that previously found in a narrow-channel geometry. For other initial conditions, however, the dilute gas develops thermal collapse unarrested by heat diffusion. We determine the dynamic scalings of the flow close to collapse analytically and verify them in hydrodynamic simulations. The results of this work imply that, in dimension higher than one, Navier-Stokes hydrodynamics of a dilute granular gas is prone to finite-time density blowups. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.Comment: 18 pages, 19 figure

    Formation and evolution of density singularities in hydrodynamics of inelastic gases

    Full text link
    We use ideal hydrodynamics to investigate clustering in a gas of inelastically colliding spheres. The hydrodynamic equations exhibit a new type of finite-time density blowup, where the gas pressure remains finite. The density blowups signal formation of close-packed clusters. The blowup dynamics are universal and describable by exact analytic solutions continuable beyond the blowup time. These solutions show that dilute hydrodynamic equations yield a powerful effective description of a granular gas flow with close-packed clusters, described as finite-mass point-like singularities of the density. This description is similar in spirit to the description of shocks in ordinary ideal gas dynamics.Comment: 4 pages, 3 figures, final versio

    Multi-Dimensional Simulations of the Accretion-Induced Collapse of White Dwarfs to Neutron Stars

    Full text link
    We present 2.5D radiation-hydrodynamics simulations of the accretion-induced collapse (AIC) of white dwarfs, starting from 2D rotational equilibrium configurations of a 1.46-Msun and a 1.92-Msun model. Electron capture leads to the collapse to nuclear densities of these cores within a few tens of milliseconds. The shock generated at bounce moves slowly, but steadily, outwards. Within 50-100ms, the stalled shock breaks out of the white dwarf along the poles. The blast is followed by a neutrino-driven wind that develops within the white dwarf, in a cone of ~40deg opening angle about the poles, with a mass loss rate of 5-8 x 10^{-3} Msun/yr. The ejecta have an entropy on the order of 20-50 k_B/baryon, and an electron fraction distribution that is bimodal. By the end of the simulations, at >600ms after bounce, the explosion energy has reached 3-4 x 10^{49}erg and the total ejecta mass has reached a few times 0.001Msun. We estimate the asymptotic explosion energies to be lower than 10^{50}erg, significantly lower than those inferred for standard core collapse. The AIC of white dwarfs thus represents one instance where a neutrino mechanism leads undoubtedly to a successful, albeit weak, explosion. We document in detail the numerous effects of the fast rotation of the progenitors: The neutron stars are aspherical; the ``nu_mu'' and anti-nu_e neutrino luminosities are reduced compared to the nu_e neutrino luminosity; the deleptonized region has a butterfly shape; the neutrino flux and electron fraction depend strongly upon latitude (a la von Zeipel); and a quasi-Keplerian 0.1-0.5-Msun accretion disk is formed.Comment: 25 pages, 19 figures, accpeted to ApJ, high resolution of the paper and movies available at http://hermes.as.arizona.edu/~luc/aic/aic.htm

    Competition and Selection Among Conventions

    Full text link
    In many domains, a latent competition among different conventions determines which one will come to dominate. One sees such effects in the success of community jargon, of competing frames in political rhetoric, or of terminology in technical contexts. These effects have become widespread in the online domain, where the data offers the potential to study competition among conventions at a fine-grained level. In analyzing the dynamics of conventions over time, however, even with detailed on-line data, one encounters two significant challenges. First, as conventions evolve, the underlying substance of their meaning tends to change as well; and such substantive changes confound investigations of social effects. Second, the selection of a convention takes place through the complex interactions of individuals within a community, and contention between the users of competing conventions plays a key role in the convention's evolution. Any analysis must take place in the presence of these two issues. In this work we study a setting in which we can cleanly track the competition among conventions. Our analysis is based on the spread of low-level authoring conventions in the eprint arXiv over 24 years: by tracking the spread of macros and other author-defined conventions, we are able to study conventions that vary even as the underlying meaning remains constant. We find that the interaction among co-authors over time plays a crucial role in the selection of them; the distinction between more and less experienced members of the community, and the distinction between conventions with visible versus invisible effects, are both central to the underlying processes. Through our analysis we make predictions at the population level about the ultimate success of different synonymous conventions over time--and at the individual level about the outcome of "fights" between people over convention choices.Comment: To appear in Proceedings of WWW 2017, data at https://github.com/CornellNLP/Macro

    Magnetically-driven explosions of rapidly-rotating white dwarfs following Accretion-Induced Collapse

    Full text link
    We present 2D multi-group flux-limited diffusion magnetohydrodynamics (MHD) simulations of the Accretion-Induced Collapse (AIC) of a rapidly-rotating white dwarf. We focus on the dynamical role of MHD processes after the formation of a millisecond-period protoneutron star. We find that including magnetic fields and stresses can lead to a powerful explosion with an energy of a few Bethe, rather than a weak one of at most 0.1 Bethe, with an associated ejecta mass of ~0.1Msun, instead of a few 0.001Msun. The core is spun down by ~30% within 500ms after bounce, and the rotational energy extracted from the core is channeled into magnetic energy that generates a strong magnetically-driven wind, rather than a weak neutrino-driven wind. Baryon loading of the ejecta, while this wind prevails, precludes it from becoming relativistic. This suggests that a GRB is not expected to emerge from such AICs during the early protoneutron star phase, except in the unlikely event that the massive white dwarf has sufficient mass to lead to black hole formation. In addition, we predict both negligible 56Ni-production (that should result in an optically-dark, adiabatically-cooled explosion) and the ejection of 0.1Msun of material with an electron fraction of 0.1-0.2. Such pollution by neutron-rich nuclei puts strong constraints on the possible rate of such AICs. Moreover, being free from ``fallback,'' such highly-magnetized millisecond-period protoneutron stars may later become magnetars, and the magnetically-driven winds may later transition to Poynting-flux-dominated, relativistic winds, eventually detectable as GRBs at cosmological distances. However, the low expected event rate of AICs will constrain them to be, at best, a small subset of GRB and/or magnetar progenitors.Comment: 16 pages, 8 figures, paper accepted to ApJ; High resolution version available at http://hermes.as.arizona.edu/~luc/aic_mhd/aic_mhd.htm

    Shock Breakout from Type Ia Supernova

    Full text link
    The mode of explosive burning in Type Ia SNe remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the DDT). We argue that this transition leads to a breakout shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (~20 keV) lasting ~0.01 s with a total radiated energy of ~10^{40} ergs, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M_V = -9 to -10 at approximately 1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m=24) will see it out to a distance of approximately 80 Mpc, giving a maximum rate of ~60/yr. Archival data sets can also be used to study the early rise dictated by the shock heating (at about 20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion induced collapse to a neutron star, but with a lower occurrence rate.Comment: Submitted for publication in The Astrophysical Journal on June 12, 2009; 7 pages, 5 figure

    Patterns and Collective Behavior in Granular Media: Theoretical Concepts

    Full text link
    Granular materials are ubiquitous in our daily lives. While they have been a subject of intensive engineering research for centuries, in the last decade granular matter attracted significant attention of physicists. Yet despite a major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradicting concepts and approaches. Authors give an overview of various theoretical models emerged in the physics of granular matter, with the focus on the onset of collective behavior and pattern formation. Their aim is two-fold: to identify general principles common for granular systems and other complex non-equilibrium systems, and to elucidate important distinctions between collective behavior in granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb pdf) avaliable at http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community responce is appreciated. Comments/suggestions send to [email protected]

    Thermonuclear Burning Regimes and the Use of SNe Ia in Cosmology

    Full text link
    The calculations of the light curves of thermonuclear supernovae are carried out by a method of multi-group radiation hydrodynamics. The effects of spectral lines and expansion opacity are taken into account. The predictions for UBVI fluxes are given. The values of rise time for B and V bands found in our calculations are in good agreement with the observed values. We explain why our results for the rise time have more solid physical justification than those obtained by other authors. It is shown that small variations in the chemical composition of the ejecta, produced in the explosions with different regimes of nuclear burning, can influence drastically the light curve decline in the B band and, to a lesser extent, in the V band. We argue that recent results on positive cosmological constant Lambda, found from the high redshift supernova observations, could be wrong in the case of possible variations of the preferred mode of nuclear burning in the earlier Universe.Comment: 20 pages, 5 figures, presented at the conference "Astronomy at the Eve of the New Century", Puschino, May 17-22, 1999. A few references and a table added, typos correcte

    Development of intuitive rules: Evaluating the application of the dual-system framework to understanding children's intuitive reasoning

    Get PDF
    This is an author-created version of this article. The original source of publication is Psychon Bull Rev. 2006 Dec;13(6):935-53 The final publication is available at www.springerlink.com Published version: http://dx.doi.org/10.3758/BF0321390

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
    • 

    corecore