4 research outputs found
Bursts of activity in collective cell migration
Dense monolayers of living cells display intriguing relaxation dynamics,
reminiscent of soft and glassy materials close to the jamming transition, and
migrate collectively when space is available, as in wound healing or in cancer
invasion. Here we show that collective cell migration occurs in bursts that are
similar to those recorded in the propagation of cracks, fluid fronts in porous
media and ferromagnetic domain walls. In analogy with these systems, the
distribution of activity bursts displays scaling laws that are universal in
different cell types and for cells moving on different substrates. The main
features of the invasion dynamics are quantitatively captured by a model of
interacting active particles moving in a disordered landscape. Our results
illustrate that collective motion of living cells is analogous to the
corresponding dynamics in driven, but inanimate, systems
Deformation and fracture of echinoderm collagen networks
Collagen networks provide the main structural component of most tissues and represent an important ingredient for bio-mimetic materials for bio-medical applications. Here we study the mechanical properties of stiff collagen networks derived from three different echinoderms and show that they exhibit non-linear stiffening followed by brittle fracture. The disordered nature of the network leads to strong sample-to-sample fluctuations in elasticity and fracture strength. We perform numerical simulations of a three dimensional model for the deformation of a cross-linked elastic fibril network which is able to reproduce the macroscopic features of the experimental results and provide insights into the internal mechanics of stiff collagen networks. Our numerical model provides an avenue for the design of collagen membranes with tunable mechanical properties.Peer reviewe