925 research outputs found

    Multiparametric determination of genes and their point mutations for identification of beta-lactamases

    Get PDF

    Canted phase in double quantum dots

    Full text link
    We perform a Hartree-Fock calculation in order to describe the ground state of a vertical double quantum dot in the absence of magnetic fields parallel to the growth direction. Intra- and interdot exchange interactions determine the singlet or triplet character of the system as the tunneling is tuned. At finite Zeeman splittings due to in-plane magnetic fields, we observe the continuous quantum phase transition from ferromagnetic to symmetric phase through a canted antiferromagnetic state. The latter is obtained even at zero Zeeman energy for an odd electron number.Comment: 5 pages, 3 figure

    First results from Faint Infrared Grism Survey (FIGS): first simultaneous detection of Lyman-alpha emission and Lyman break from a galaxy at z=7.51

    Get PDF
    Galaxies at high redshifts provide a valuable tool to study cosmic dawn, and therefore it is crucial to reliably identify these galaxies. Here, we present an unambiguous and first simultaneous detection of both the Lyman-alpha emission and the Lyman break from a z = 7.512+/- 0.004 galaxy, observed in the Faint Infrared Grism Survey (FIGS). These spectra, taken with G102 grism on Hubble Space Telescope (HST), show a significant emission line detection (6 sigma) in multiple observational position angles (PA), with total integrated Ly{\alpha} line flux of 1.06+/- 0.12 e10-17erg s-1cm-2. The line flux is nearly a factor of four higher than the previous MOSFIRE spectroscopic observations of faint Ly{\alpha} emission at {\lambda} = 1.0347{\mu}m, yielding z = 7.5078+/- 0.0004. This is consistent with other recent observations implying that ground-based near-infrared spectroscopy underestimates total emission line fluxes, and if confirmed, can have strong implications for reionization studies that are based on ground-based Lyman-{\alpha} measurements. A 4-{\sigma} detection of the NV line in one PA also suggests a weak Active Galactic Nucleus (AGN), potentially making this source the highest-redshift AGN yet found. Thus, this observation from the Hubble Space Telescope clearly demonstrates the sensitivity of the FIGS survey, and the capability of grism spectroscopy to study the epoch of reionization.Comment: Published in ApJL; matches published versio

    Tunneling through a multigrain system: deducing the sample topology from the nonlinear conductance

    Full text link
    We study a current transport through a system of a few grains connected with tunneling links. The exact solution is given for an arbitrarily connected double-grain system with a shared gate in the framework of the orthodox model. The obtained result is generalized for multigrain systems with strongly different tunneling resistances. We analyse the large-scale nonlinear conductance and demonstrate how the sample topology can be unambiguously deduced from the spectroscopy pattern (differential conductance versus gate-bias plot). We present experimental data for a multigrain sample and reconstruct the sample topology. A simple selection rule is formulated to distinguish samples with spectral patterns free from spurious disturbance caused by recharging of some grains nearby. As an example, we demonstrate experimental data with additional peaks in the spectroscopy pattern, which can not be attributed to coupling to additional grains. The described approach can be used to judge the sample topology when it is not guaranteed by fabrication and direct imaging is not possible.Comment: 13 pages (including 8 figures

    One- and two-dimensional N-qubit systems in capacitively coupled quantum dots

    Full text link
    Coulomb blockade effects in capacitively coupled quantum dots can be utilized for constructing an N-qubit system with antiferromagnetic Ising interactions. Starting from the tunneling Hamiltonian, we theoretically show that the Hamiltonian for a weakly coupled quantum-dot array is reduced to that for nuclear magnetic resonance (NMR) spectroscopy. Quantum operations are carried out by applying only electrical pulse sequences. Thus various error-correction methods developed in NMR spectroscopy and NMR quantum computers are applicable without using magnetic fields. A possible measurement scheme in an N-qubit system is quantitatively discussed.Comment: 5 pages, revtex, 3 figures, to appear in Phys. Rev.

    Correlation and symmetry effects in transport through an artificial molecule

    Full text link
    Spectral weights and current-voltage characteristics of an artificial diatomic molecule are calculated, considering cases where the dots connected in series are in general different. The spectral weights allow us to understand the effects of correlations, their connection with selection rules for transport, and the role of excited states in the experimental conductance spectra of these coupled double dot systems (DDS). An extended Hubbard Hamiltonian with varying interdot tunneling strength is used as a model, incorporating quantum confinement in the DDS, interdot tunneling as well as intra- and interdot Coulomb interactions. We find that interdot tunneling values determine to a great extent the resulting eigenstates and corresponding spectral weights. Details of the state correlations strongly suppress most of the possible conduction channels, giving rise to effective selection rules for conductance through the molecule. Most states are found to make insignificant contributions to the total current for finite biases. We find also that the symmetry of the structure is reflected in the I-V characteristics, and is in qualitative agreement with experiment.Comment: 25 figure files - REVTEX - submitted to PR

    Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier

    Full text link
    Building upon earlier work on the relation between the dimensionless interdot channel conductance g and the fractional Coulomb-blockade peak splitting f for two electrostatically equivalent dots, we calculate the leading correction that results from an interdot tunneling barrier that is not a delta-function but, rather, has a finite height V and a nonzero width xi and can be approximated as parabolic near its peak. We develop a new treatment of the problem for g much less than 1 that starts from the single-particle eigenstates for the full coupled-dot system. The finiteness of the barrier leads to a small upward shift of the f-versus-g curve at small values of g. The shift is a consequence of the fact that the tunneling matrix elements vary exponentially with the energies of the states connected. Therefore, when g is small, it can pay to tunnel to intermediate states with single-particle energies above the barrier height V. The correction to the zero-width behavior does not affect agreement with recent experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript figures included using eps
    corecore