110 research outputs found

    Transport mechanisms and rates for the long-lived Chernobyl deposits

    Get PDF

    Vadose-Zone Alteration of Metaschoepite and Ceramic UO2 in Savannah River Site Field Lysimeters

    Get PDF
    Uranium dioxide (UO2) and metaschoepite (UO3•nH2O) particles have been identified as contaminants at nuclear sites. Understanding their behavior and impact is crucial for safe management of radioactively contaminated land and to fully understand U biogeochemistry. The Savannah River Site (SRS) (South Carolina, USA), is one such contaminated site, following historical releases of U-containing wastes to the vadose zone. Here, we present an insight into the behavior of these two particle types under dynamic conditions representative of the SRS, using field lysimeters (15 cm D x 72 cm L). Discrete horizons containing the different particle types were placed at two depths in each lysimeter (25 cm and 50 cm) and exposed to ambient rainfall for 1 year, with an aim of understanding the impact of dynamic, shallow subsurface conditions on U particle behavior and U migration. The dissolution and migration of U from the particle sources and the speciation of U throughout the lysimeters was assessed after 1 year using a combination of sediment digests, sequential extractions, and bulk and μ-focus X-ray spectroscopy. In the UO2 lysimeter, oxidative dissolution of UO2 and subsequent migration of U was observed over 1–2 cm in the direction of waterflow and against it. Sequential extractions of the UO2 sources suggest they were significantly altered over 1 year. The metaschoepite particles also showed significant dissolution with marginally enhanced U migration (several cm) from the sources. However, in both particle systems the released U was quantitively retained in sediment as a range of different U(IV) and U(VI) phases, and no detectable U was measured in the lysimeter effluent. The study provides a useful insight into U particle behavior in representative, real-world conditions relevant to the SRS, and highlights limited U migration from particle sources due to secondary reactions with vadose zone sediments over 1 year.Peer reviewe

    Momentum of an electromagnetic wave in dielectric media

    Get PDF
    Almost a hundred years ago, two different expressions were proposed for the energy--momentum tensor of an electromagnetic wave in a dielectric. Minkowski's tensor predicted an increase in the linear momentum of the wave on entering a dielectric medium, whereas Abraham's tensor predicted its decrease. Theoretical arguments were advanced in favour of both sides, and experiments proved incapable of distinguishing between the two. Yet more forms were proposed, each with their advocates who considered the form that they were proposing to be the one true tensor. This paper reviews the debate and its eventual conclusion: that no electromagnetic wave energy--momentum tensor is complete on its own. When the appropriate accompanying energy--momentum tensor for the material medium is also considered, experimental predictions of all the various proposed tensors will always be the same, and the preferred form is therefore effectively a matter of personal choice.Comment: 23 pages, 3 figures, RevTeX 4. Removed erroneous factor of mu/mu_0 from Eq.(44

    Incorporation of uranium into hematite during crystallization from ferrihydrite

    Get PDF
    Ferrihydrite was exposed to U(VI)-containing cement leachate (pH 10.5) and aged to induce crystallization of hematite. A combination of chemical extractions, TEM, and XAS techniques provided the first evidence that adsorbed U(VI) (≈3000 ppm) was incorporated into hematite during ferrihydrite aggregation and the early stages of crystallization, with continued uptake occurring during hematite ripening. Analysis of EXAFS and XANES data indicated that the U(VI) was incorporated into a distorted, octahedrally coordinated site replacing Fe(III). Fitting of the EXAFS showed the uranyl bonds lengthened from 1.81 to 1.87 Å, in contrast to previous studies that have suggested that the uranyl bond is lost altogether upon incorporation into hematite the results of this study both provide a new mechanistic understanding of uranium incorporation into hematite and define the nature of the bonding environment of uranium within the mineral structure. Immobilization of U(VI) by incorporation into hematite has clear and important implications for limiting uranium migration in natural and engineered environments. © 2014 American Chemical Society

    Modeling and interpreting element ratios in water and sediments: A sensitivity analysis of post-Chernobyl Ru : Cs ratios.

    Get PDF
    When elements are simultaneously added to lakes, experimentally or by accident, their ratios in the water phase and in bottom sediments can change with time due to differential partitioning between solution and suspended particles or sediments. A number of equations are developed to show the change of ratio with time in water and sediments assuming simultaneous pulse inputs followed by a range of combinations of loss processes from solution (i.e. hydraulic losses, sorption to particles followed by settling, and diffusion into the sediments). The pattern of events is discussed both for pulse events with specific limiting assumptions and for combined continuous and pulse inputs. The models show that elemental ratios in sediments are generally less sensitive indicators of differential partitioning than are elemental ratios in water. For lakes with long residence times, the long-term elemental ratio in the sediments does not differ from that in the initial spike to the water column, but for short residence times, it is directly dependent on the ratio of either partition or diffusion coefficients. The models are used to interpret Ru : Cs ratios measured in the water and sediments of Esthwaite Water subsequent to the pulse input of Chernobyl fallout. The ratios can be explained by assuming nuclides were lost either by flushing and sorption or by flushing, sorption, and diffusion. The process combination of flushing and diffusion is incompatible with the observed constant ratios

    Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium thermoterrabacterium ferrireducens

    Get PDF
    The thermophilic, gram-positive bacterium Thermoterrabacterium ferrireducens coupled organotrophic growth to the reduction of sparingly soluble U(VI) phosphate. X-ray powder diffraction and X-ray absorption spectroscopy analysis identified the electron acceptor in a defined medium as U(VI) phosphate [uramphite; (NH4)(UO2)(PO4) · 3H 2O], while the U(IV)-containing precipitate formed during bacterial growth was identified as ningyoite [CaU(PO4)2 · H2O]. This is the first report of microbial reduction of a largely insoluble U(VI) compound
    corecore