19 research outputs found

    Video Game Music and Cultural Dissemination

    Get PDF
    As the internationally one of the most-played multiplayer online battle arena (MOBA) game, Honour of Kings (HoK) has created a unique cultural phenomenon apart from its gaming appeal. HoK weaves its aesthetically-pleasing game character, plot, scene, background, and music with Chinese traditional culture (CTC) elements. This contributes to popularise CTC across the world and Chinese music works, accordingly. Therefore, this article starts with the CTC elements and music works in HoK and explores the effect of Video Game Music (VGM) on cultural dissemination. Further, it explores the new ways and trends of traditional culture transmission. Lastly, this article comprehensively discusses the current problems and solutions of cultural and musical promulgation in games. It can be explained that the effort in terms of VGM composition would contribute to the HoK game develop better. These findings can also provide research ideas for developing VGM in Chinese style

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Chitosan as a barrier membrane material in periodontal tissue regeneration

    No full text
    Periodontal regeneration is defined as regeneration of the tooth-supporting tissues including cementum, periodontal ligament, and alveolar bone. Guided tissue regeneration (GTR) has been demonstrated to be an effective technique to achieve periodontal regeneration. In the GTR procedures, various kinds of membranes play important roles. Chitosan, a deacetylated derivative of chitin, is biocompatible, biodegradable, and antimicrobial. It acts as hydrating agent and possesses tissue healing and osteoinducing effect. Chitosan can be easily processed into membranes, gels, nanofibers, beads, nanoparticles, scaffolds, and sponges forms and can be used in drug delivery systems. Here, we review the bioproperties of chitosan and report the progress of application of chitosan as membranes in GTR and guided bone regeneration (GBR), which indicates that chitosan could be a good substrate candidate as the materials for the GTR/GBR membranes

    Client-Oriented Blind Quality Metric for High Dynamic Range Stereoscopic Omnidirectional Vision Systems

    No full text
    A high dynamic range (HDR) stereoscopic omnidirectional vision system can provide users with more realistic binocular and immersive perception, where the HDR stereoscopic omnidirectional image (HSOI) suffers distortions during its encoding and visualization, making its quality evaluation more challenging. To solve the problem, this paper proposes a client-oriented blind HSOI quality metric based on visual perception. The proposed metric mainly consists of a monocular perception module (MPM) and binocular perception module (BPM), which combine monocular/binocular, omnidirectional and HDR/tone-mapping perception. The MPM extracts features from three aspects: global color distortion, symmetric/asymmetric distortion and scene distortion. In the BPM, the binocular fusion map and binocular difference map are generated by joint image filtering. Then, brightness segmentation is performed on the binocular fusion image, and distinctive features are extracted on the segmented high/low/middle brightness regions. For the binocular difference map, natural scene statistical features are extracted by multi-coefficient derivative maps. Finally, feature screening is used to remove the redundancy between the extracted features. Experimental results on the HSOID database show that the proposed metric is generally better than the representative quality metric, and is more consistent with the subjective perception

    The evolutionary properties of the blue loop under the influence of rapid rotation and low metallicity

    No full text
    Context. The physical mechanism leading to the formation of the blue loop in the Hertzsprung–Russell (HR) diagram is not satisfactorily explained by the evolutionary track of single stars. Rapid rotation and low metallicity drastically modify the internal structures and surface compositions of stars. Therefore, they provide a very significant pattern to investigate the evolutionary properties of the blue loop. Aims. In this paper, we mainly explore how rapid rotation and low metallicity have an important impact on the occurrence and extension of the blue loop. Methods. To this end, we implemented the rotating stellar evolution model, including the angular momentum transportation and chemical element mixing. We incorporated several initial rotational velocities and two characteristic metallicities in various models to explore the blue loop extension. Results. The blue loop can occur when the hydrogen burning shell merges with the hydrogen–helium abundance discontinuity. We find that the blue loop extension strongly depends on the amplitude and gradient of the hydrogen–helium discontinuity. The hydrogen–helium discontinuity is created by the intermediate convective region or the convective dredge-up. A steeper hydrogen gradient in association with a greater amplitude of the hydrogen abundance discontinuity may favour a hotter star. Conclusions. Both the low metallicity and rapid rotation tend to restrain the development of the outer convective envelope and thus disfavour the occurrence and extension of the blue loop. There are three main reasons for this occurrence. Firstly, the helium core and its core potential can be enlarged by rotational mixing or low metallicity. Secondly, rapid rotation reduces the convective dredge-up depth in the star with Z = 0.014 and the mass extension of the intermediate convective region in the star with Z = 0.0008. Both of these phenomena lead to a reduction of the amplitude of the hydrogen abundance gradient. Thirdly, strong rotational mixing in the model (i.e. vini = 350 km s−1) with Z = 0.0008 reduces the energy generation rate from the hydrogen burning shell. Without bending towards higher effective temperature in the HR diagram, the additional helium brought near the H-burning shell associated with the larger He core can cause the star to expand towards becoming a red giant star directly after the core hydrogen burning. Rapid rotation and low metallicity tend to produce surface enrichment of the ratio of nitrogen to carbon and reduce the 12C left in the core; this has an important influence on the stellar compactness of the supernovae progenitor

    Close binary evolution based on

    No full text
    Context. The observed late-type WC Wolf-Rayet stars (WC7-9) with low luminosity below log L/L⊙ < 5.4 in the HR diagram cannot be reproduced satisfactorily by the evolutionary track of single stars. The mass transfer due to Roche lobe overflow drastically modifies the internal structure and surface compositions of two components. Therefore, binaries provide a very promising evolutionary channel to produce these WC stars. Aims. The Gaia satellite provides accurate distances to WC stars and confirms the luminosities of WC stars. Based on a small grid containing single stars and binaries, we aim to investigate the extent to which the evolution of a single or a close binary can reproduce the properties of these stars. Methods. We considered single-star models with masses between 20 and 40 M⊙. We calculated the evolution for three binaries with a 30 M⊙ primary star with a 27 M⊙ companion star with initial orbital periods of 6.0, 20.0, 500.0, and 1000.0 days. Results. The rotating single star can evolve into a late-type WC star but with high luminosity (i.e., log L/L⊙ > 5.4). Enhanced wind mass loss rates during RSG and WR stages, as proposed in the literature, can cause the star to approach the observational range of low-luminosity WC stars and favor the formation of low-luminosity WO stars. In a wide binary system with initial Porb = 1000 days, the primary star can evolve into a late-type WC star and be compatible with the observed properties of the low-luminosity WC stars. The result is almost insensitive to the adopted accretion efficiency 1 − β. Conclusions. Compared with single stars, the low brightness is due to a smaller temperature gradient inside the star after the Case C Roche lobe overflow, while the low effective temperature is due to envelope expansion. There are four physical reasons for the formation of the expanding envelope. Firstly, less helium envelope can be transferred to the companion star in this system. Heavy helium envelopes can be heated by the helium burning shell and this creates the necessary conditions for the envelope expansion. Secondly, the expansion of the helium envelope can also be boosted by the sharp shrinkage of the larger carbon-oxygen core through the mirror effect. Thirdly, a more massive WC star can attain a higher Eddington factor because of its higher L/M ratio. The increase in L/M with mass is the primary cause for the extended envelopes in WC stars. Finally, the iron opacity bump at T ∼ 105.25 K may also trigger envelope inflation because it can lead to a larger Eddington factor

    Peripheral T-cell lymphomas of follicular helper T-cell type frequently display an aberrant CD3(-/dim)CD4(+) population by flow cytometry: an important clue to the diagnosis of a Hodgkin lymphoma mimic.

    No full text
    Nodal follicular helper T-cell-derived lymphoproliferations (specifically the less common peripheral T-cell lymphomas of follicular type) exhibit a spectrum of histologic features that may mimic reactive hyperplasia or Hodgkin lymphoma. Even though angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma of follicular type share a common biologic origin from follicular helper T-cells and their morphology has been well characterized, flow cytometry of peripheral T-cell lymphomas of follicular type has not been widely discussed as a tool for identifying this reactive hyperplasia/Hodgkin lymphoma mimic. We identified 10 peripheral T-cell lymphomas of follicular type with available flow cytometry data from five different institutions, including two cases with peripheral blood evaluation. For comparison, we examined flow cytometry data for 8 classical Hodgkin lymphomas (including 1 lymphocyte-rich classical Hodgkin lymphoma), 15 nodular lymphocyte predominant Hodgkin lymphomas, 15 angioimmunoblastic T-cell lymphomas, and 26 reactive nodes. Lymph node histology and flow cytometry data were reviewed, specifically for the presence of a CD3(-/dim)CD4(+) aberrant T-cell population (described in angioimmunoblastic T-cell lymphomas), besides other T-cell aberrancies. Nine of 10 (90%) peripheral T-cell lymphomas of follicular type showed a CD3(-/dim)CD4(+) T-cell population constituting 29.3% (range 7.9-62%) of all lymphocytes. Five of 10 (50%) had nodular lymphocyte predominant Hodgkin lymphoma or lymphocyte-rich classical Hodgkin lymphoma-like morphology with scattered Hodgkin-like cells that expressed CD20, CD30, CD15, and MUM1. Three cases had a nodular growth pattern and three others exhibited a perifollicular growth pattern without Hodgkin-like cells. Epstein-Barr virus was positive in 1 of 10 cases (10%). PCR analysis showed clonal T-cell receptor gamma gene rearrangement in all 10 peripheral T-cell lymphomas of follicular type. By flow cytometry, 11 of 15 (73.3%) angioimmunoblastic T-cell lymphomas showed the CD3(-/dim)CD4(+) population (mean: 19.5%, range: 3-71.8%). Using a threshold of 3% for CD3(-/dim)CD4(+) T cells, all 15 nodular lymphocyte predominant Hodgkin lymphoma controls and 8 classical Hodgkin lymphomas were negative (Mann-Whitney P=0.01, F-PTCL vs Hodgkin lymphomas), as were 25 of 26 reactive lymph nodes. The high frequency of CD3(-/dim)CD4(+) aberrant T cells is similar in angioimmunoblastic T-cell lymphomas and peripheral T-cell lymphomas of follicular type, and is a useful feature in distinguishing peripheral T-cell lymphomas of follicular type from morphologic mimics such as reactive hyperplasia or Hodgkin lymphoma
    corecore