20 research outputs found

    Determining electrical losses of the traction drive of electric train based on a synchronous motor with excitation from permanent magnets

    Get PDF
    Iдентифiковано параметри iнвертора напруги тягового приводу на базi синхронного двигуна зi збудженням вiд постiйних магнiтiв. Синтезовано iмiтацiйну модель тягового приводу, що дозволяє отримати миттєвi значення електричних втрат в iнверторi та двигунi. Проаналiзовано залежнiсть електричних витрат вiд швидкостi руху поїзда та тактової частоти iнвертора

    Analysis of optimal operating modes of the induction traction drives for establishing a control algorithm over a semiconductor transducer

    Get PDF
    Оптимізовано режими роботи тягового асинхронного приводу тепловоза за критерієм ефективності. Ідентифіковано оптимальні режими керування автономного інвертору напруги при різних температурах обмоток тягових двигунів. Проаналізовано оптимальні режими роботи тягового приводу тепловоза та трамваю, що дозволило встановити відмінності розташування точки переходу з просторово-векторної до однократної ШІМ від температури двигуна

    Determination of optimal parameters of the pulse width modulation of the 4qs transducer for electriс rolling stock

    Get PDF
    Досліджено режими роботи однофазного 4qs-перетворювача з широтно-імпульсною модуляцією в складі електрорухомого складу змінного струму. Розроблено методу визначення параметрiв ШIМ, при яких реалізується оптимальний за критерiєм мiнiмiзацiї величини реактивної потужності в системі "локомотив – тягова мережа" режим роботи перетворювача. Особливостями запропонованої методи є розділення процесу визначення оптимальних параметрів ШІМ на 2 етапи, що дозволяє видалити з імітаційної моделі непотрiбнi на даному етапі блоки та зменшити сумарний час моделювання. На першому етапі визначаються значення коефіцієнту потужності та струму ланки постійного струму в усьому діапазоні коефiцiєнтiв модуляції та зсуву між мережевим струмом та опорним синусоїдальним сигналом. Далi, з отриманого масиву даних виділяються пари значень параметрів ШІМ, за яких реалізується найвищий коефіцієнт потужності системи "електровоз – тягова мережа", та заносяться до табличною системи завдання параметрів ШІМ. На другому етапi визначається залежності електричних втрат, а, отже, й ККД, та коефіцієнту нелінійних спотворювань мережевого струму вiд тактової частоти перетворювачi. Визначення електричних втрат ґрунтується на обчисленнi енергiї, що була розсiяна протягом 1 с на IGBT-транзисторi та снаберному резисторi в залежностi вiд миттєвих значень струму через них. Для знаходження параметрiв ШIМ за наведеною методою розроблено iмiтацiйну модель 4qs-перетворювача, проведено iдентифiкацiю параметрiв ШIМ перетворювача електровозу для тестової задачi. Визначено, що енергетичнi показники перетворювача залежать нелiнiйно вiд трьох керуючих величин, що є параметрами ШIМ: коефiцiєнту модуляцiї, зсуву мiж мережевим струмом та опорним синусоїдальним сигналом, та тактовою частоти ШIМ. Визначено, що перетворювач з iдентифiкованими параметрами ШIМ забезпечує одиничний коефiцiєнт потужностi тягової мережi при навантаженнi бiльше 10 % вiд номiналь- ного в режимах тяги та рекуперативного гальмування. Отримано залежнiсть електричних втрат перетворювача та коефiцiєнту нелiнiйних спотворень в тяговiй мережi вiд тактової частоти ШIМ. Визначено, що рацiональне значення тактової частоти лежить в iнтервалi 900…2000 Гц, при цьому ККД перетворювача досягає 98…95 %, коефiцiєнт нелiнiйних спотворень складає 12…5 %. Визначено, що виключення з силового кола снаберної ланки може суттєво зменшити сумарнi електричнi втрати. Встановлено, що втрати на паразитних опорах фiльтрiв незначнi, тому їх можна не враховувати в загальному балансi втрат

    Исследование пропорционального модулятора давления на основе линейного двигателя электромагнитного типа

    Get PDF
    The paper deals with a workflow of a proportional pressure modulator equipped with a linear electric motor of electromagnetic type (LEMET). A schematic diagram consisting of a power supply and control system has been constructed to determine the performance of LEMET. The power supply system is a self-contained half-bridge inverter. The converter input is supplied with 12 V DC voltage. The motor phase is powered by an inverter which includes transistor switches and diodes. The control system of the autonomous inverter consists of two channels – a current limiting channel and a linear transfer channel. The study is based on the results of numerical and simulation modeling of LEMET workflows. Numerical simulation is performed and investigated by a finite element method in the FEMM environment. Geometry of the LEMET model lies in the region of air with an electromagnetic permeability of 1. An initial radius of the grid generation for the working gap area is 0.5 mm, while for other areas an adaptive generation method has been applied. In order to determine a continuous power function at any point within a current variation interval i and a displacement x current linkage and electromagnetic force functions have been approximated by polynomials use of the Curve Fitting application. The simulation LEMET model of a proportional modulator has been built in the MatLab Simulink environment. The implicit Runge-Kutta method using the secondorder inverse differentiation formulas with a variable step has been applied for solution of a mathematical model in the MatLab Simulink system. The equation of an electrical circuit for an inductor motor phase has been compiled according to the second law of Kirchhoff. The LEMET traction characteristics have been obtained by moving a locking and adjusting element (LCE) from 0 to 6 mm in steps of 1 mm while changing the MMF in the winding from 0 to 2 A in steps of 0.1 A. It has been established that in order to move the LCE by 6 mm with the speed of 40 mm/s with a resolution of 0.15 mm, the maximum value of the current in the LEMET winding is equal to 2.5 A. In this case the value of the electromagnetic force is 120 N. This makes it possible to improve an accuracy of the brake drive pressure regulation by 12.3 %. Solutions have been proposed to increase the LEMET speedwork. Characteristics of the engine have been described and numerical parameters of LEMET have been determined in the paper. The developed simulation model allows to investigate functional properties and dynamic characteristics of the proportional modulator with a relative error of 4.07 %.Проведено исследование рабочего процесса пропорционального модулятора давления с линейным электродвигателем электромагнитного типа (ЛЭДЭТ). Для определения рабочих характеристик ЛЭДЭТ составлена принципиальная схема, состоящая из системы питания и управления. Система питания представляет собой автономный полумостовой инвертор. На вход преобразователя подается постоянное напряжение 12 В. Фаза двигателя питается от инвертора, в состав которого входят транзисторные ключи и диоды. Система управления автономным инвертором состоит из двух каналов – канала ограничения тока и канала линейного перемещения. Исследование основано на результатах численного и имитационного моделирования рабочих процессов ЛЭДЭТ. Численное моделирование выполнено и исследовано методом конечных элементов в среде FEMM. Геометрия модели ЛЭДЭТ заключена в область воздуха с электромагнитной проницаемостью, равной 1. Начальный радиус генерации сетки для области рабочего зазора составляет 0,5 мм, а для других областей установлен адаптивный метод генерации. Для определения непрерывной степенной функции в любой точке интервала варьирования тока i и перемещения x функции потокосцепления и электромагнитной силы аппроксимированы полиномами при помощи приложения Curve Fitting. Имитационная модель ЛЭДЭТ пропорционального модулятора построена в среде MatLab Simulink. Для решения математической модели в системе MatLab Simulink выбран неявный метод Рунге – Кутта, использующий формулы обратного дифференцирования 2-го порядка с переменным шагом. Уравнение электрической цепи фазы индукторного двигателя составлено согласно второму закону Кирхгофа. Тяговые характеристики ЛЭДЭТ получены путем перемещения запорно-регулирующего элемента (ЗРЭ) от 0 до 6 мм с шагом 1 мм при изменении магнито-движущей силы (МДС) в обмотке от 0 до 2 А с шагом 0,1 А. Установлено, что для перемещения ЗРЭ на 6 мм при скорости 40 мм/с с дискретностью 0,15 мм максимальное значение силы тока в обмотке ЛЭДЭТ равно 2,5 А. При этом значение электромагнитной силы равно 120 Н. Это позволяет повысить точность регулирования давления в тормозном приводе на 12,3 %. Предложены решения, повышающие быстродействие ЛЭДЭТ. Описаны характеристики двигателя и определены численные параметры ЛЭДЭТ. Разработанная имитационная модель позволяет исследовать функциональные свойства и динамические характеристики пропорционального модулятора с относительной погрешностью 4,07 %

    Estimation of the main dimensions of the traction permanent magnet-assisted synchronous reluctance motor

    Get PDF
    Goal. The goal of the research is to develop an algorithm for selecting the main dimensions of a traction permanent magnet-assisted synchronous reluctance motor. Methodology. A method for determining the main dimensions of the motor, which combines the analytical selection of stator parameters and numerical field calculations for the selection of rotor parameters. The need to check the mechanical strength of a rotor with permanent NdFeB magnets in flux barriers is shown. Results. The article proposes an algorithm for selecting the main dimensions of a traction permanent magnet-assisted synchronous reluctance motor, which combines analytical expressions for selecting stator parameters and numerical field calculations for selecting rotor parameters. It is determined that analytical methods for calculating the magnetic circuit need to be developed in order to reduce the time to select the main dimensions of the motor. Originality. For the first time the sizes of active parts of the permanent magnet-assisted synchronous reluctance motor with power of 180 kW for the drive of wheels of the trolleybus are defined. Practical significance. As a result of research the sizes of active parts, stator winding data and a design of a rotor of the electric motor are defined. The obtained results can be applied when creating an electric motor for a trolleybus

    Оцінка головних розмірів тягового синхронно-реактивного електродвигуна з постійними магнітами

    Get PDF
    Goal. The goal of the research is to develop an algorithm for selecting the main dimensions of a traction permanent magnet-assisted synchronous reluctance motor. Methodology. A method for determining the main dimensions of the motor, which combines the analytical selection of stator parameters and numerical field calculations for the selection of rotor parameters. The need to check the mechanical strength of a rotor with permanent NdFeB magnets in flux barriers is shown. Results. The article proposes an algorithm for selecting the main dimensions of a traction permanent magnet-assisted synchronous reluctance motor, which combines analytical expressions for selecting stator parameters and numerical field calculations for selecting rotor parameters. It is determined that analytical methods for calculating the magnetic circuit need to be developed in order to reduce the time to select the main dimensions of the motor. Originality. For the first time the sizes of active parts of the permanent magnet-assisted synchronous reluctance motor with power of 180 kW for the drive of wheels of the trolleybus are defined. Practical significance. As a result of research the sizes of active parts, stator winding data and a design of a rotor of the electric motor are defined. The obtained results can be applied when creating an electric motor for a trolleybus.У статті розглянуті питання проектування тягового синхронно-реактивного електродвигуна з постійними магнітами потужністю 180 кВт для приводу коліс тролейбуса. Запропоновано спосіб визначення головних розмірів електродвигуна, який поєднує аналітичний вибір параметрів статора та чисельно-польові розрахунки для вибору параметрів ротора. Показана необхідність перевірки механічної міцності ротора, в якому розташовано постійні магніти NdFeB у потокових бар’єрах. У результаті дослідження визначено розміри активних частин, обмоткові дані статора та конструктив ротора електродвигуна

    Procedure for Selecting Optimal Geometric Parameters of the Rotor for A Traction Non-partitioned Permanent Magnet-assisted Synchronous Reluctance Motor

    Full text link
    This paper reports the construction of a mathematical model for determining the electromagnetic momentum of a synchronous reluctance motor with non-partitioned permanent magnets. Underlying it is the calculation of the engine magnetic field using the finite-element method in the flat-parallel problem statement. The model has been implemented in the FEMM finite-element analysis environment. The model makes it possible to determine the engine's electromagnetic momentum for various rotor geometries. The problem of conditional optimization of the synchronous reluctance motor rotor was stated on the basis of the rotor geometric criteria. As an analysis problem, it is proposed to use a mathematical model of the engine's magnetic field. Constraints for geometric and strength indicators have been defined. The Nelder-Mead method was chosen as the optimization technique. The synthesis of geometrical parameters of the synchronous reluctance motor rotor with non-partitioned permanent magnets has been proposed on the basis of solving the problem of conditional optimization. The restrictions that are imposed on optimization parameters have been defined. Based on the study results, the dependence of limiting the angle of rotation of the magnet was established on the basis of strength calculations. According to the calculation results based on the proposed procedure, it is determined that the optimal distance from the interpole axis and the angle of rotation of magnets is at a limit established by the strength of the rotor structure. Based on the calculations, the value of the objective function decreased by 24.4 % (from −847 Nm to −1054 Nm), which makes it possible to significantly increase the electromagnetic momentum only with the help of the optimal arrangement of magnets on the engine rotor. The results of solving the problem of synthesizing the rotor parameters for a trolleybus traction motor helped determine the optimal geometrical parameters for arranging permanent magnets

    Analysis of Optimal Operating Modes of the Induction Traction Drives for Establishing a Control Algorithm Over a Semiconductor Transducer

    Full text link
    The study addresses determining optimal operating modes of the induction traction drive. We identified optimal operating modes of the autonomous voltage inverter at different temperatures of windings of the traction motors for a tram carriage and a diesel locomotive.The identification is carried out of optimal parameters in the operating modes of autonomous voltage inverter of the traction drive of a tram and a diesel locomotive. We obtained dependences of performance efficiency and electromagnetic torque of the induction traction motor on the rotation frequency and temperature of the windings for the following modes: acceleration, recuperative braking, and maintaining preset speed.We determined operating modes of induction traction drive of the tram Tatra T3 VPA and the diesel locomotive 2TE25A over the entire range of motors' rotation frequency at spatial-vector and one-time pulse-width modulation of the semiconductor inverter for different values of temperature of the motor's windings. A technique was devised for this purpose, which is based on solving a problem on the optimization of parameters of the traction drive using a combined method that employs genetic algorithms and the Nelder–Mead method.It was established that dependences of change in the transition point from the spatial-vector to the one-time PWM on the temperature of traction motor for a tram and a diesel locomotive are not similar. Different level of the location of this point is predetermined by the different load in magnetic circle of the motor, by different level of saturation coefficient. The difference in saturation coefficient is 0.15‒0.4 r.u

    Optimization of Thermal Modes and Cooling Systems of the Induction Traction Engines of Trams

    Full text link
    We developed a procedure for the optimization of thermal modes and parameters of the cooling system of induction traction engines of tram carriages. The procedure includes the following basic steps. The optimization of operating modes of an induction traction drive by the criterion of effectiveness of its work under different modes. The optimization of motion modes of a tram carriage along a track section with the assigned motion schedule and profile based on the curves of the motion of a tram carriage, optimal by the criterion of energy consumption, using the method of Hamilton-Jacobi-Bellman. The optimization of parameters of the cooling fan of traction engines by the criterion of efficiency of a cooling system using the Weyl method by the generalized golden section. It is proposed to conduct determining of operating modes of a traction drive in advance based on the solution to the problem of conditional optimization of its modes. In order to determine the optimal operating modes of a traction drive, we selected a combined method: global search is executed by genetic algorithm with a one-point crossover and by selection on the principle of roulette. At the final stage of an optimization procedure, optimum refining is carried out using the Nelder–Mead method. When a tram carriage moved along a track section, we defined the following. We determined the optimal modes of motion of the tram carriage T-3 VPA with induction traction engines for a track section with the assigned motion schedule. It was found that, compared with the basic design, efficiency of the cooling system increased by 27.6 %, which corresponds to a reduction in the proposed criterion of efficiency. Based on the results of modeling a traction engine with an optimal fan, it was established that the largest overheating is observed in the frontal part of the stator winding. The temperature is 139.6 °C at second 3363 from starting the motion and it does not exceed a permissible value of 140 °C
    corecore