592 research outputs found

    On the Benign One-Pot Preparation of Nanoporous Copper Thin Films with Bimodal Chan-nel Size Distributions by Chemical Dealloying in an Alkaline Solution

    Get PDF
    Nanoporous copper (NPC) thin films with bimodal channel size distributions can be benignly fabricated by one-pot chemical dealloying of dual-phase Al 27 at Cu alloy with hypereutectic structure in the NaOH solution. The microstructure of these NPC thin films was characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis. The results show that these NPC thin films are composed of interconnected large-sized channels (100s of nm) with highly porous channel walls (10s of nm), in which large-sized channels resulting from entire dissolution of solid solution while small-sized those de-riving from part corrosion of intermetallics. Both large- and small-sized channels are 3D, open, and bicon-tinuous. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3520

    Preparation of Nanostructured Li2MnO3 Cathode Materials by Single-Step Hydrothermal Method

    Get PDF
    Nanosized (10~50 nm) cathode material Li2MnO3 was prepared for with MnSO4·H2O,KMnO4 and Li- OH aqueous solution as the precursor via single-step hydrothermal reaction by controlling the reaction time, proportion of processor, and the reagent concentration. The prepared materials were well crystallized and exhibited a monoclinic Li2MnO3 structure with a space group of C2/m phase. The electrochemical performance of the material was tested at current density of 60 mAg-1 (1/4 C) between 4.3V and 2.0 V at room temperature, showing good electrochemical properties with the initial discharge capacity of 243 mAh·g-1, because it was more exposed to the electrolyte due to its nanostructure. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3519

    Structure and Electrochemical Performance of Li[Li0.2Co0.4Mn0.4]O2 Cathode Material for Lithium Ion Battery by Co-precipitation Method

    Get PDF
    The nano-structured Li[Li0.2Co0.4Mn0.4]O2 cathode material is synthesized by a co-precipitation method. X-ray diffraction shows that the synthesized material has a hexagonal α-NaFeO2 type structure with a space group R-3m. Scanning electron microscopy and transmission electron microscopy images show the homogeneous distribution with 100-200 nm. X-ray photoelectron spectroscopy results indicate that the oxi-dation states of Co and Mn in Li[Li0.2Co0.4Mn0.4]O2 are present in trivalence and tetravalence, respectively. The charge-discharge curves and cycling performance are analyzed in detail. The initial charge and dis-charge capacities are respectively 236.5 mAh g-1 and 140.3 mAh g-1 at the current density of 100 mA g-1 in the voltage range of 2.0-4.6 V. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3520

    A logical deduction based clause learning algorithm for Boolean satisfiability problems

    Get PDF
    Clause learning is the key component of modern SAT solvers, while conflict analysis based on the implication graph is the mainstream technology to generate the learnt clauses. Whenever a clause in the clause database is falsified by the current variable assignments, the SAT solver will try to analyze the reason by using different cuts (i.e., the Unique Implication Points) on the implication graph. Those schemes reflect only the conflict on the current search subspace, does not reflect the inherent conflict directly involved in the rest space. In this paper, we propose a new advanced clause learning algorithm based on the conflict analysis and the logical deduction, which reconstructs a linear logical deduction by analyzing the relationship of different decision variables between the backjumping level and the current decision level. The logical deduction result is then added into the clause database as a newly learnt clause. The resulting implementation in Minisat improves the state-of-the-art performance in SAT solving

    Multi-neutron transfer coupling in sub-barrier 32S+90,96Zr fusion reactions

    Full text link
    The role of neutron transfers is investigated in the fusion process below the Coulomb barrier by analyzing 32S+90Zr and 32S+96Zr as benchmark reactions. A full coupled-channel calculation of the fusion excitation functions has been performed for both systems by using multi-neutron transfer coupling for the more neutron-rich reaction. The enhancement of fusion cross sections for 32S+96Zr is well reproduced at sub-barrier energies by NTFus code calculations including the coupling of the neutron-transfer channels following the Zagrebaev semiclassical model. We found similar effects for 40Ca+90Zr and 40Ca+96Zr fusion excitation functions.Comment: Minor corrections, 11 pages, 4 figures, Fusion11 Conference, Saint Malo, France, 2-6 mai 201

    A Study on the Sudden Death of Entanglement

    Get PDF
    The dynamics of entanglement and the phenomenon of entanglement sudden death (ESD) \cite{yu} are discussed in bipartite systems, measured by Wootters Concurrence. Our calculation shows that ESD appears whenever the system is open or closed and is dependent on the initial condition. The relation of the evolution of entanglement and energy transfer between the system and its surroundings is also studied.Comment: Comments and criticism are welcome. Accepted by Phys. Lett.

    Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    Full text link
    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented

    A self-consistent method to analyze the effects of the positive Q-value neutron transfers on fusion

    Get PDF
    AbstractConsidering the present limitation of the need for external parameters to describe the nucleus–nucleus potential and the couplings in the coupled-channels calculations, this work introduces an improved method without adjustable parameter to overcome the limitation and then sort out the positive Q-value neutron transfers (PQNT) effects based on the CCFULL calculations. The corresponding analysis for Ca+Ca, S,Ca+Sn, and S,Ca+Zr provides a reliable proof and a quantitative evaluation for the residual enhancement (RE) related to PQNT. In addition, the RE for S32,Ca40+Zr94 shows an unexpected larger enhancement than S32,Ca40+Zr96 despite the similar multi-neutron transfer Q-values. This method should rather strictly test the fusion models and be helpful for excavating the underlying physics

    Interference between the halves of a double-well trap containing a Bose-Einstein condensate

    Full text link
    Interference between the halves of a double-well trap containing a Bose-Einstein condensate is studied. It is found that when the atoms in the two wells are initially in the coherent state, the intensity exhibits collapses and revivals, but it does not for the initial Fock states. Whether the initial states are in the coherent states or in a Fock states, the fidelity time has nothing to do with collision. We point out that interference and its fidelity can be adjusted experimentally by properly preparing the number and initial states of the system.Comment: 10 pages, 3 figures, accepted by Phy. rev.
    corecore