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The nano-structured Li[Li0.2Co0.4Mn0.4]O2 cathode material is synthesized by a co-precipitation method. 

X-ray diffraction shows that the synthesized material has a hexagonal α-NaFeO2 type structure with a 

space group R-3m. Scanning electron microscopy and transmission electron microscopy images show the 

homogeneous distribution with 100-200 nm. X-ray photoelectron spectroscopy results indicate that the oxi-

dation states of Co and Mn in Li[Li0.2Co0.4Mn0.4]O2 are present in trivalence and tetravalence, respectively. 

The charge-discharge curves and cycling performance are analyzed in detail. The initial charge and dis-

charge capacities are respectively 236.5 mAh g-1 and 140.3 mAh g-1 at the current density of 100 mA g-1 in 

the voltage range of 2.0-4.6 V. 
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1. INTRODUCTION 
 

Lithium ion batteries were considered to be a promis-

ing electric storage technology for electric vehicles. A 

vast series of Li-storage cathode materials had been ex-

plored in the past two decades. LiCoO2 had been widely 

applied due to its good electrochemical performance and 

its ease of preparation. However, the concerns about 

high costs, toxicity and structural instability prompted a 

search for alternative cathode materials. Manganese 

substitution was considered because it was more abun-

dant and cheaper than Cobalt. Li-rich cathode materials 

xLiCoO2·(1-x)Li2MnO3 have been studied in the recent 

past [1-3]. In these materials, Li2MnO3 existed with 

short-range order within a LiCoO2 matrix [4]. Li+ extrac-

tion and oxygen loss from lattice were concurrent at the 

first charge process of Li-rich layered materials. A part 

of Mn4+ ions was activated to participate in the following 

electrochemical reactions, leading to a high discharge 

capacity [5]. Among the different stoichiometric ratio of 

xLiCoO2•(1-x)Li2MnO3 compounds, Li[Li0.2Co0.4Mn0.4]O2 

have been studied by many authors. To improve the per-

formance of Li[Li0.2Co0.4Mn0.4]O2 materials, some groups 

have recently adopted different synthetic methods, such 

as sol-gel method [6], solid state method [7, 8], oxalate-

precursor method [9]. 

In this work, we developed a simple co-

precipitation method to synthesize nano-structured 

Li[Li0.2Co0.4Mn0.4]O2 particles. The structure, morphology 

and electrochemical properties were thoroughly investi-

gated. 
 

2. EXPERIMENTAL 
 

The Li[Li0.2Co0.4Mn0.4]O2 sample was synthesized 

by a co-precipitation method. The procedure was de-

scribed as follows. The desired amount of 

Co(NO3)2·6H2O, MnCl2·4H2O were dissolved to form a 

aqueous solution. M(OH)2 (M = Co, Mn) precipitate 

was gained by slowly dripping the above solution and 

LiOH solution synchronously into a glass reactor with 

continuous strring. The pH value of the reactant solu-

tion was adjusted by ammonia and was kept at 11. 

The hydroxide precipitate was filtrated, washed and 

dried. The mixture of precipitate and LiOH·H2O were 

ground and initially heat-treated at 500 °C for 5 h for 

the impregnation of Lithium into the matrix. The fi-

nal product was finally obtained by sintering at 800 

°C for 10 h and then quenching to room temperature.  

X-ray diffraction (XRD, Rigaku D/Max-2400, Ja-

pan) using Cu Kα radiation was used to identify the 

crystalline structure of the synthesized materials. 

Scanning electron microscopy (SEM, Hitachi S-4800, 

Japan), transmission electron microscopy (TEM, JEM-

2100F, Japan) were engaged to observe morphology, 

size and distribution of as-prepared material. X-ray 

photoelectron spectroscopy (XPS) was obtained by 

using ESCALAB250 (Thermo Fisher Scientific) with 

monochromatic Al Kα anode source with pass energy 

of 20 eV and energy step of 0.1 eV. The chemical va-

lence state of the transition metal elements was de-

termined. 

The electrode slurry was prepared by mixing 80 

wt.% active material, 10 wt.% carbon black, and 10 

wt.% polyvinylidene fluoride (PVDF) with n-methyl-2-

pyrrolidone (NMP). The prepared slurry was pasted 

onto an aluminum foil. The electrode was then dried in 

a vacuum oven at 100 °C for 2 h. The testing half-cells 

were assembled in an argon-filled glove box (MB-10-G 

with TP170b/mono, MBRAUN) with lithium metal as 

counter and reference electrode. Electrolyte was 1 M 

LiPF6 in a mixed solution of EC and DMC (1:1 in vol-

ume ratio). The charge-discharge measurements were 

galvanostatically carried out by using a battery test 

system (NWEARE BTS-610, Neware Technology Co., 

Ltd., China). All the batteries were tested over a volt-

age range between 2.0 V and 4.6 V vs. Li0/Li+ at room 

temperature. 
 

3. RESULTS AND DISCUSSION 
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Fig. 1 shows the X-ray diffraction pattern of 

Li[Li0.2Co0.4Mn0.4]O2 sample. All the major diffraction 

peaks can be indexed as a layered oxide lattice based 

on a hexagonal α-NaFeO2 type structure with a space 

group R-3m [10]. The weak peaks between 21° and 25° 

are reflected by a monoclinic unit cell with a C2/m 

symmetry, due to a LiMn6 cation arrangement that 

occurs in the transition metal layers of Li2MnO3 re-

gions [11]. Both (006)/(102) and (108)/(110) doublets are 

clear split, suggesting that the material crystallized in 

the layered structure without formation of any spinel 

structure [11]. 
 

 
 

Fig. 1 – X-ray diffraction pattern of Li[Li0.2Co0.4Mn0.4]O2 sample 
 

Fig. 2 shows the SEM and TEM images of 

Li[Li0.2Co0.4Mn0.4]O2 sample. It can be observed that 

homogeneous particles with dimensions in a narrow 

range between 100 nm and 200 nm. Undoubtedly, 

such nano-sized particles must result in a high sur-

face area and a short diffusion path for Li inser-

tion/extraction and also for the diffusive transport of 

the oxygen ion vacancies, so as to enhance the electro-

chemical performance, especially the high rate capaci-

ty [12].  
 

 
 

Fig. 2 – SEM and TEM images of Li[Li0.2Co0.4Mn0.4]O2 sample. 
 

Fig. 3 shows Co2p and Mn2p XPS spectra of as-

prepared material. The chemical valence state of the 

transition metal elements is determined. In Fig. 3A, 

the results show a Co2p3/2 main peak at 780.9 eV with 

a satellite peak at 790.3 eV and a Co2p1/2 main peak at 

795.9 eV with a satellite peak at 805.2 eV. It confirms 

that the main oxidation state is Co3+ [13, 14]. In the 

Mn2p spectra (Fig. 3B), the major peak Mn2p3/2 at 

643.1 eV confirms the Mn4+ oxidation states in this 

material, in accord with previous reports [15, 16]. 

 

 
 

Fig. 3 – Co2p (A) and Mn2p (B) XPS spectra of 

Li[Li0.2Co0.4Mn0.4]O2 sample 
 

Fig. 4 shows the 1st (A) and 2nd (B) cycles charge-

discharge curves for Li[Li0.2Co0.4Mn0.4]O2 sample be-

tween 2.0 and 4.6 V at the current density of 100 and 

200 mA g-1. In the first charge process, the slope of 4.0-

4.4 V corresponds to the oxidation of the transition 

metal (Co3+ → Co3.6) [1], and a long plateau at ~4.5 V 

corresponds to oxygen loss with Li extraction, attrib-

uting to active process of Li2MnO3 (Li2MnO3 → 2Li+ + 

2e- + 0.5O2 + MnO2) [17]. The long plateau vanishes 

during the subsequent charge cycles. After this irre-

versible structural transformation, both Co3.6+ and 

Mn4+ can be reduced in the first discharge process. The 

sample delivers the first charge capacity of 236.5 mAh 

g-1 and the first discharge capacity of 140.3 mAh g-1 at 

the current density of 100 mA g-1, with the coulombic 

efficiency of 59.3%. The sample delivers the first charge 

capacity of 126.5 mAh g-1 and the first discharge capac-

ity of 76.6 mAh g-1 at the current density of 200 mA g-1, 

with the coulombic efficiency of 60.5%. The 2nd charge 

capacities are respectively 158.2 and 88.8 mAh g-1 and 

discharge capacities are respectively 143.8 and 77.3 

mAh g-1, corresponding to the current density of 100 

and 200 mA g-1, respectively, with the coulombic effi-

ciency of 90.9% and 87.0%. After 100th cycles (Fig. 5), 

the retained discharge capacities are respectively 119.1 

and 95.9 mAh g-1, which are 83.2%, and 124.1% of their 

2nd discharge capacities, corresponding to the current 

density of 100 and 200 mA g-1. The cycling process ac-

companies with activation process of Li2MnO3 compo-

nent and capacity decay. Activation process undergoes 

a longer duration with higher current density. It can be 

observed that the discharge capacity ascends in the 

beginning several cycles and then descends in the sub-
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sequent cycles from two profiles. The activation process 

of Li2MnO3 component plays a main role in the ascend-

ing part. The descending part may be ascribed to the 

irreversible capacity loss caused by structural collapse 

during intercalation/deintercalation of Li+. The degree 

of decline enlarges at lower current density, probably 

due to the more serious structure damage during the 

deeper charge and discharge process. 
 

 

 
 

Fig. 4 – The 1st (A) and 2nd (B) cycles charge-discharge 

curves of Li[Li0.2Co0.4Mn0.4]O2 sample at the current density of 

100 and 200 mA g-1. 

 
 

Fig. 5 – Galvanostatic cycling performance of 

Li[Li0.2Co0.4Mn0.4]O2 sample for 100 cycles. 

 

4. CONCLUSIONS 
 

The nano-sized material Li[Li0.2Co0.4Mn0.4]O2 was 

synthesized by a co-precipitation method. After 100th 

cycles, the retained discharge capacities are respective-

ly 119.1 and 95.9 mAh g-1, which are 83.2%, and 

124.1% of their 2nd discharge capacities, corresponding 

to the current density of 100 and 200 mA g-1. Much 

work needs to be done in order to meet its commercial 

application. 
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