2,791 research outputs found

    EEG signals analysis using multiscale entropy for depth of anesthesia monitoring during surgery through artificial neural networks

    Get PDF
    In order to build a reliable index to monitor the depth of anesthesia (DOA), many algorithms have been proposed in recent years, one of which is sample entropy (SampEn), a commonly used and important tool to measure the regularity of data series. However, SampEn only estimates the complexity of signals on one time scale. In this study, a new approach is introduced using multiscale entropy (MSE) considering the structure information over different time scales. The entropy values over different time scales calculated through MSE are applied as the input data to train an artificial neural network (ANN) model using bispectral index (BIS) or expert assessment of conscious level (EACL) as the target. To test the performance of the new index's sensitivity to artifacts, we compared the results before and after filtration by multivariate empirical mode decomposition (MEMD). The new approach via ANN is utilized in real EEG signals collected from 26 patients before and after filtering by MEMD, respectively; the results show that is a higher correlation between index from the proposed approach and the gold standard compared with SampEn. Moreover, the proposed approach is more structurally robust to noise and artifacts which indicates that it can be used for monitoring the DOA more accurately.This research was financially supported by the Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant no. MOST103-2911-I-008-001). Also, it was supported by National Chung-Shan Institute of Science & Technology in Taiwan (Grant nos. CSIST-095-V301 and CSIST-095-V302) and National Natural Science Foundation of China (Grant no. 51475342)

    Nanoscale spin-polarization in dilute magnetic semiconductor (In,Mn)Sb

    Full text link
    Results of point contact Andreev reflection (PCAR) experiments on (In,Mn)Sb are presented and analyzed in terms of current models of charge conversion at a superconductor-ferromagnet interface. We investigate the influence of surface transparency, and study the crossover from ballistic to diffusive transport regime as contact size is varied. Application of a Nb tip to a (In,Mn)Sb sample with Curie temperature Tc of 5.4 K allowed the determination of spin-polarization when the ferromagnetic phase transition temperature is crossed. We find a striking difference between the temperature dependence of the local spin polarization and of the macroscopic magnetization, and demonstrate that nanoscale clusters with magnetization close to the saturated value are present even well above the magnetic phase transition temperature.Comment: 4 page

    On the properties of contact binary stars

    Full text link
    A catalogue of light curve solutions of contact binary stars has been compiled. It contains the results of 159 light curve solutions. Properties of contact binary stars were studied by using the catalogue data. As it is well known since Lucy's (1968a,b) and Mochnacki's (1981) works, primary components transfer their own energy to the secondary star via the common envelope around the two stars. This transfer was parameterized by a transfer parameter (ratio of the observed and intrinsic luminosities of the primary star). We proved that this transfer parameter is a simple function of the mass and luminosity ratio. This newly found relation is valid for all systems except H type systems which have a different relation. We introduced a new type of contact binary stars: H subtype systems which have a large mass ratio (q>0.72q>0.72). These systems show highly different behaviour on the luminosity ratio - transfer parameter diagram from other systems and according to our results the energy transfer rate is less efficient in them than in other type of contact binary stars. We also show that different types of contact binaries have well defined locations on the mass ratio - luminosity ratio diagram. All contact binary systems do not follow Lucy's relation (L2/L1=(M2/M1)0.92L_2/L_1 = (M_2/M_1)^{0.92}). No strict mass ratio - luminosity ratio relation of contact binary stars exists.Comment: 5 pages, 4 figures, accepted for publication in A&

    Temperature-dependent photoluminescence of GaInP/AlGaInP multiple quantum well laser structure grown by metalorganic chemical vapor deposition with tertiarybutylarsine and tertiarybutylphosphine

    Get PDF
    A GaInP/AlGaInP multiple quantum well laser structure was grown by low-pressure metalorganic chemical vapor deposition with tertiarybutylarsine and tertiarybutylphosphine. Laser diodes fabricated from this structure lased at room temperature. Photoluminescence ~PL! measurements were performed from 10 to 230 K. The PL energy increased with temperature from 10 to 70 K and decreased above 70 K. The former was attributed to thermal activation of trapped carriers due to localization in the quantum wells, while the latter was attributed to temperature-induced band-gap shrinkage. The PL intensity as a function of temperature was fitted by employing two nonradiative recombination mechanisms with good agreement, resulting in two activation energies that correspond to losses of photogenerated carriers to nonradiative centers. © 2003 American Institute of Physics.published_or_final_versio

    Simultaneous determination of flavonoids and triterpenoids in Cyclocarya paliurus leaves using high-performance liquid chromatography

    Get PDF
    Background: Cyclocarya paliurus is an endangered plant and endemic to China. The leaves of C. paliurus have been used in drug formulations and as ingredients in functional foods in China. The aim of this study was to develop an effective method to extract most of the compounds and to establish a simplified HPLC analytical method to determine the contents of major bioactive compounds simultaneously.Materials and methods: High-performance liquid chromatography (HPLC) coupled with a photodiode array detector (PDA) was used for the simultaneous determination of the major flavonoids and triterpenoids in C. paliurus leaves.Results: Ultrasonic extraction in 100% methanol for 30 min was adopted as the optimal extraction method for C. paliurus leaves. The separation conditions were optimized using a Phenomenex C18 ODS column (250 mm × 4.6 mm, 5 μm) with a mobile phase of acetonitrile and 0.02% formic acid and a detection wavelength of 205 nm. The validation data indicated that this new HPLC analytical method successfully quantified the provenance and seasonal variations of seven major compounds (three flavonoids and four triterpenoids) in C. paliurus leaves.Conclusion: The study provided a novel and simplified approach to simultaneously determine the quantity of major flavonoids and triterpenoids in C. paliurus leaves. The results could promote the optimization of silvicultural systems for quality control of C. paliurus.Key words: Cyclocarya paliurus; HPLC; flavonoids; triterpenoid

    Specific subsystems of the inferior parietal lobule are associated with hand dysfunction following stroke: A cross-sectional resting-state fMRI study

    Get PDF
    Aim The inferior parietal lobule (IPL) plays important roles in reaching and grasping during hand movements, but how reorganizations of IPL subsystems underlie the paretic hand remains unclear. We aimed to explore whether specific IPL subsystems were disrupted and associated with hand performance after chronic stroke. Methods In this cross-sectional study, we recruited 65 patients who had chronic subcortical strokes and 40 healthy controls from China. Each participant underwent the Fugl-Meyer Assessment of Hand and Wrist and resting-state fMRI at baseline. We mainly explored the group differences in resting-state effective connectivity (EC) patterns for six IPL subregions in each hemisphere, and we correlated these EC patterns with paretic hand performance across the whole stroke group and stroke subgroups. Moreover, we used receiver operating characteristic curve analysis to distinguish the stroke subgroups with partially (PPH) and completely (CPH) paretic hands. Results Stroke patients exhibited abnormal EC patterns with ipsilesional PFt and bilateral PGa, and five sensorimotor-parietal/two parietal–temporal subsystems were positively or negatively correlated with hand performance. Compared with CPH patients, PPH patients exhibited abnormal EC patterns with the contralesional PFop. The PPH patients had one motor-parietal subsystem, while the CPH patients had one sensorimotor-parietal and three parietal-occipital subsystems that were associated with hand performance. Notably, the EC strength from the contralesional PFop to the ipsilesional superior frontal gyrus could distinguish patients with PPH from patients with CPH. Conclusions The IPL subsystems manifest specific functional reorganization and are associated with hand dysfunction following chronic stroke.Natural Science Foundation of Zhejiang Province, Grant/Award Number: LGF19H270001; Shanghai Sailing Program, Grant/Award Number: 20YF144510

    Quantum well intermixing for the fabrication of InGaAsN/GaAs lasers with pulsed anodic oxidation

    Get PDF
    Quantum well (QW) intermixing was carried out by post-growth rapid thermal annealing in InGaAsN/GaAs QW laser structures grown by solid-source molecular-beam epitaxy. The intensity and width of the photoluminescence peak showed a dependence on annealing temperature and time, and the maximum intensity and minimum linewidth were obtained after the wafer was annealed at 670 °C for 60 s. The peak luminescence energy blueshifted with increasing annealing time, although it plateaued at an annealing time that corresponded to that yielding the maximum luminescence intensity. The diffusion coefficient for indium was determined from a comparison between experimental data and modeling, but showed that QW intermixing alone was not sufficient to account for the relatively large blueshift after annealing. Defects related to the incorporation of nitrogen in the QW layer were responsible for the low photoluminescence efficiency in the as-grown samples and were annealed out during rapid thermal annealing. During annealing, nitrogen interstitials moved to vacancy sites within the QW and thus suppressed QW intermixing. After annealing wafers under conditions giving the maximum luminescence intensity, lasers were fabricated with pulsed anodic oxidation. © 2004 American Institute of Physics.published_or_final_versio

    Genome-wide analysis of the nucleotide binding site leucine-rich repeat genes of four orchids revealed extremely low numbers of disease resistance genes

    Get PDF
    Orchids are one of the most diverse flowering plant families, yet possibly maintain the smallest number of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) type plant resistance (R) genes among the angiosperms. In this study, a genome-wide search in four orchid taxa identified 186 NBS-LRR genes. Furthermore, 214 NBS-LRR genes were identified from seven orchid transcriptomes. A phylogenetic analysis recovered 30 ancestral lineages (29 CNL and one RNL), far fewer than other angiosperm families. From the genetics aspect, the relatively low number of ancestral R genes is unlikely to explain the low number of R genes in orchids alone, as historical gene loss and scarce gene duplication has continuously occurred, which also contributes to the low number of R genes. Due to recent sharp expansions, Phalaenopsis equestris and Dendrobium catenatum having 52 and 115 genes, respectively, and exhibited an "early shrinking to recent expanding" evolutionary pattern, while Gastrodia elata and Apostasia shenzhenica both exhibit a "consistently shrinking" evolutionary pattern and have retained only five and 14 NBS-LRR genes, respectively. RNL genes remain in extremely low numbers with only one or two copies per genome. Notably, all of the orchid RNL genes belong to the ADR1 lineage. A separate lineage, NRG1, was entirely absent and was likely lost in the common ancestor of all monocots. All of the TNL genes were absent as well, coincident with the RNL NRG1 lineage, which supports the previously proposed notion that a potential functional association between the TNL and RNL NRG1 genes

    Unique walnut-shaped porous MnO<inf>2</inf>/C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability

    Get PDF
    Unique walnut-shaped porous MnO2/carbon nanospheres via in situ carbonization of amorphous MnO2 nanospheres demonstrate enhanced reaction kinetics for lithium storage.This work is realized in the frame of a program for Changjiang Scholars and Innovative Research Team (IRT_15R52) of Chinese Ministry of Education. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Life Membership at the Clare Hall, Cambridge and the financial support of the Department of Chemistry, University of Cambridge. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. T. Hasan acknowledges funding from the Royal Academy of Engineering (Graphlex) and an Impact Acceleration Award (GRASS). This work is also financially supported by the National Science Foundation for Young Scholars of China (No. 21301133 and 51302204), International Science & Technology Cooperation Program of China (2015DFE52870) and and Self-determined and Innovative Research Funds of the SKLWUT (2015‐ZD‐7). The authors also would like to thank Dr. Bin-Jie Wang from Shanghai Nanoport (FEI, Shanghai) for TEM analysis, and thank Hang Ping from Wuhan University of Technology for the TGA/DSC tests.This is the author accepted manuscript. The final version is available from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C6TA00594
    corecore