7,417 research outputs found

    Assessment and enhancement of MERRA land surface hydrology estimates

    Get PDF
    The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides, in addition to atmospheric fields, global estimates of soil moisture, latent heat flux, snow, and runoff for 1979 present. This study introduces a supplemental and improved set of land surface hydrological fields ("MERRA-Land") generated by rerunning a revised version of the land component of the MERRA system. Specifically, the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameter values in the rainfall interception model, changes that effectively correct for known limitations in the MERRA surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ECMWF Re-Analysis-Interim (ERA-I). MERRA-Land and ERA-I root zone soil moisture skills (against in situ observations at 85 U.S. stations) are comparable and significantly greater than that of MERRA. Throughout the Northern Hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 18 U.S. basins) of MERRA and MERRA-Land is typically higher than that of ERA-I. With a few exceptions, the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using MERRA output for land surface hydrological studies

    Paraunitary oversampled filter bank design for channel coding

    Get PDF
    Oversampled filter banks (OSFBs) have been considered for channel coding, since their redundancy can be utilised to permit the detection and correction of channel errors. In this paper, we propose an OSFB-based channel coder for a correlated additive Gaussian noise channel, of which the noise covariance matrix is assumed to be known. Based on a suitable factorisation of this matrix, we develop a design for the decoder's synthesis filter bank in order to minimise the noise power in the decoded signal, subject to admitting perfect reconstruction through paraunitarity of the filter bank. We demonstrate that this approach can lead to a significant reduction of the noise interference by exploiting both the correlation of the channel and the redundancy of the filter banks. Simulation results providing some insight into these mechanisms are provided

    Evaluation of several adjuvants in avian influenza vaccine to chickens and ducks

    Get PDF
    The effects of three different adjuvants, mineral oil, Montanide™ ISA 70M VG, and Montanide™ ISA 206 VG, were evaluated on reverse genetics H5N3 avian influenza virus cell cultured vaccine. The immune results of SPF chickens after challenging with highly pathogenic avian influenza (HPAI) virus demonstrated that mineral oil adjuvant group and 70M adjuvant group provided 100% protection efficiency, but 206 adjuvant group provided only 40%. Statistical analysis indicated that the protection effects of mineral oil adjuvant group and the 70M adjuvant showed no significant difference to each other, but with significant difference to 206 adjuvant group. All three groups could induce high titres of antibody after immunizing SPF ducks, but there was no significant difference among them. The immunization effect of 70M adjuvant group on SPF chickens were the best and showed significant difference compared with optimized 70Mi Montanide™ eight series adjuvants groups. These results suggest that 70M adjuvant could be a novel adjuvant for preparing avian influenza vaccine

    Caspase 3/ROCK1 pathway mediates high glucose-induced platelet microparticles shedding

    Get PDF
    Background: Platelet microparticles (PMPs) are closely associated with diabetic macrovascular complications. This study aimed to explore the underlying mechanisms of high glucose-induced PMPs generation. Methods: Washed platelets, obtained from the plasma of healthy male Sprague-Dawley rats, were incubated with high glucose. PMPs were isolated using gradient centrifugation and counted by flow cytometry. Expression and activity of ROCK1 and caspase3 were evaluated by real-time PCR, Western blotting, and activity assay kit. Results: High glucose enhanced PMPs shedding in the presence of collagen. The mRNA and protein levels of ROCK1, but not ROCK2, were increased in platelets incubated with high glucose. Y-27632, an inhibitor of ROCK, blocked the increased PMPs shedding induced by high glucose. Expression and activity of caspase3 were elevated in platelets under the high glucose conditions. Z-DVED-FMK, a caspase3 inhibitor, inhibited ROCK1 activity and decreased the PMPs generation under high glucose. Conclusion: High glucose increased PMPs shedding via caspase3-ROCK1 signal pathway

    Human cytomegalovirus-encoded pUL7 is a novel CEACAM1-like molecule responsible for promotion of angiogenesis.

    Get PDF
    UNLABELLED: Persistent human cytomegalovirus (HCMV) infection has been linked to several diseases, including atherosclerosis, transplant vascular sclerosis (TVS), restenosis, and glioblastoma. We have previously shown that factors secreted from HCMV-infected cells induce angiogenesis and that this process is due, at least in part, to increased secretion of interleukin-6 (IL-6). In order to identify the HCMV gene(s) responsible for angiogenesis promotion, we constructed a large panel of replication-competent HCMV recombinants. One HCMV recombinant deleted for UL1 to UL10 was unable to induce secretion of factors necessary for angiogenesis. Fine mapping using additional HCMV recombinants identified UL7 as a viral gene required for production of angiogenic factors from HCMV-infected cells. Transient expression of pUL7 induced phosphorylation of STAT3 and ERK1/2 MAP kinases and production of proangiogenic factors, including IL-6. Addition of recombinant pUL7 to cells was sufficient for angiogenesis and was again associated with increased IL-6 expression. Analysis of the UL7 structure revealed a conserved domain similar to the immunoglobulin superfamily domain and related to the N-terminal V-like domain of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Our report therefore identifies UL7 as a novel HCMV-encoded molecule that is both structurally and functionally related to cellular CEACAM1, a proangiogenic factor highly expressed during vasculogenesis. IMPORTANCE: A hallmark of cytomegalovirus (CMV) infection is its ability to modulate the host cellular machinery, resulting in the secretion of factors associated with long-term diseases such as vascular disorders and cancer. We previously demonstrated that HCMV infection alters the types and quantities of bioactive proteins released from cells (designated the HCMV secretome) that are involved in the promotion of angiogenesis and wound healing. A key proangiogenic and antiapoptotic factor identified from a proteomic-based approach was IL-6. In the present report, we show for the first time that HCMV UL7 encodes a soluble molecule that is a structural and functional homologue of the CEACAM1 proangiogenic cellular factor. This report thereby identifies a critical component of the HCMV secretome that may be responsible, at least in part, for the vascular dysregulation associated with persistent HCMV infection

    Gain switching of monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon

    Get PDF
    © 1983-2012 IEEE. We report the first demonstration of gain-switched optical pulses generated by continuous-wave 1.3 μm InAs/GaAs quantum dot (QD) broad-area lasers directly grown on silicon. The shortest observed pulses have typical durations between 175 and 200 ps with peak output powers of up to 66 mW. By varying the drive current pulsewidth and amplitude systematically, we find that the peak optical power is maximized through sufficiently long high-amplitude drive pulses, whereas shorter drive pulses with high amplitudes yield the narrowest achievable pulses. A three-level rate equation travelling-wave model is used for the simulation of our results in order to gain a first insight into the underlying physics and the laser parameters responsible for the observed behavior. The simulations indicate that a limited gain from the InAs QDs and a very high gain compression factor are the main factors contributing to the increased pulsewidth. As the optical spectra of the tested broad-area QD laser give a clear evidence of multitransverse-mode operation, the laser's dynamic response could be additionally limited by transversal variations of the gain, carrier density, and photon density over the 50 μm wide laser waveguide

    Dynamic Properties of Monolithic 1.3 μm InAs/GaAs Quantum Dot Lasers on Silicon

    Get PDF
    Small-signal experiments with a 2.5 mm-long quantum dot narrow ridge-waveguide laser on silicon show a modulation bandwidth of 1.6 GHz. For the first time, we report key high-speed parameters such as the differential gain and the gain compression factor

    GPR43 deficiency protects against podocyte insulin resistance in diabetic nephropathy through the restoration of AMPKα activity

    Get PDF
    RATIONALE: Albuminuria is an early clinical feature in the progression of diabetic nephropathy (DN). Podocyte insulin resistance is a main cause of podocyte injury, playing crucial roles by contributing to albuminuria in early DN. G protein-coupled receptor 43 (GPR43) is a metabolite sensor modulating the cell signalling pathways to maintain metabolic homeostasis. However, the roles of GPR43 in podocyte insulin resistance and its potential mechanisms in the development of DN are unclear. METHODS: The experiments were conducted by using kidney tissues from biopsied DN patients, streptozotocin (STZ) induced diabetic mice with or without global GPR43 gene knockout, diabetic rats treated with broad-spectrum oral antibiotics or fecal microbiota transplantation, and cell culture model of podocytes. Renal pathological injuries were evaluated by periodic acid-schiff staining and transmission electron microscopy. The expression of GPR43 with other podocyte insulin resistance related molecules was checked by immunofluorescent staining, real-time PCR, and Western blotting. Serum acetate level was examined by gas chromatographic analysis. The distribution of gut microbiota was measured by 16S ribosomal DNA sequencing with faeces. RESULTS: Our results demonstrated that GPR43 expression was increased in kidney samples of DN patients, diabetic animal models, and high glucose-stimulated podocytes. Interestingly, deletion of GPR43 alleviated albuminuria and renal injury in diabetic mice. Pharmacological inhibition and knockdown of GPR43 expression in podocytes increased insulin-induced Akt phosphorylation through the restoration of adenosine 5'-monophosphate-activated protein kinase α (AMPKα) activity. This effect was associated with the suppression of AMPKα activity through post-transcriptional phosphorylation via the protein kinase C-phospholipase C (PKC-PLC) pathway. Antibiotic treatment-mediated gut microbiota depletion, and faecal microbiota transplantation from the healthy donor controls substantially improved podocyte insulin sensitivity and attenuated glomerular injury in diabetic rats accompanied by the downregulation of the GPR43 expression and a decrease in the level of serum acetate. CONCLUSION: These findings suggested that dysbiosis of gut microbiota-modulated GPR43 activation contributed to albuminuria in DN, which could be mediated by podocyte insulin resistance through the inhibition of AMPKα activity

    A western diet increases serotonin availability in rat small intestine

    Full text link
    Diet-induced obesity is associated with changes in gastrointestinal function and induction of a mild inflammatory state. Serotonin (5-HT) containing enterochromaffin (EC) cells within the intestine respond to nutrients and are altered by inflammation. Thus, our aim was to characterize the uptake and release of 5-HT from EC cells of the rat ileum in a physiologically relevant model of diet-induced obesity. In chow-fed (CF) and Western diet-fed (WD) rats electrochemical methods were used to measure compression evoked (peak) and steady state (SS) 5-HT levels with fluoxetine used to block the serotonin reuptake transporter (SERT). The levels ofmRNAfor tryptophan hydroxylase 1 (TPH1) and SERT were determined by quantitative PCR, while EC cell numbers were determined immunohistochemically. In WD rats, the levels of 5-HT were significantly increased (SS: 19.2±3.7 ±M; peak: 73.5±14.1 ±M) compared with CF rats (SS: 12.3±1.8 ±M; peak: 32.2±7.2 ±M), while SERTdependent uptake of 5-HT was reduced (peak WD: 108% of control versus peak CF: 212% control). In WD rats, there was a significant increase in TPH1 mRNA, a decrease in SERT mRNA and protein, and an increase in EC cells. In conclusion, our data show that foods typical of a Western diet are associated with an increased 5-HT availability in the rat ileum. Increased 5-HT availability is driven by the up-regulation of 5-HT synthesis genes, decreased re-uptake of 5-HT, and increased numbers and/or 5-HT content of EC cells which are likely to cause altered intestinal motility and sensation in vivo. Copyright © 2010 The Endocrine Society. All rights reserved

    Biokinetics and Subchronic Toxic Effects of Oral Arsenite, Arsenate, Monomethylarsonic Acid, and Dimethylarsinic Acid in v-Ha-ras Transgenic (Tg.AC) Mice

    Get PDF
    Previous research demonstrated that 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment increased the number of skin papillomas in v-Ha-ras transgenic (Tg.AC) mice that had received sodium arsenite [(As(III)] in drinking water, indicating that this model is useful for studying the toxic effects of arsenic in vivo. Because the liver is a known target of arsenic, we examined the pathophysiologic and molecular effects of inorganic and organic arsenical exposure on Tg.AC mouse liver in this study. Tg.AC mice were provided drinking water containing As(III), sodium arsenate [As(V)], monomethylarsonic acid [(MMA(V)], and 1,000 ppm dimethylarsinic acid [DMA(V)] at dosages of 150, 200, 1,500, or 1,000 ppm as arsenic, respectively, for 17 weeks. Control mice received unaltered water. Four weeks after initiation of arsenic treatment, TPA at a dose of 1.25 μg/200 μL acetone was applied twice a week for 2 weeks to the shaved dorsal skin of all mice, including the controls not receiving arsenic. In some cases arsenic exposure reduced body weight gain and caused mortality (including moribundity). Arsenical exposure resulted in a dose-dependent accumulation of arsenic in the liver that was unexpectedly independent of chemical species and produced hepatic global DNA hypomethylation. cDNA microarray and reverse transcriptase–polymerase chain reaction analysis revealed that all arsenicals altered the expression of numerous genes associated with toxicity and cancer. However, organic arsenicals [MMA(V) and DMA(V)] induced a pattern of gene expression dissimilar to that of inorganic arsenicals. In summary, subchronic exposure of Tg.AC mice to inorganic or organic arsenicals resulted in toxic manifestations, hepatic arsenic accumulation, global DNA hypomethylation, and numerous gene expression changes. These effects may play a role in arsenic-induced hepatotoxicity and carcinogenesis and may be of particular toxicologic relevance
    corecore