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Abstract— Oversampled filter banks (OSFB) have been considered for
channel coding, since their redundancy can be utilised to permit the detec-
tion and correction of channel errors. In this paper, we propose an OSFB
based channel coder for a correlated additive Gaussian noise channel, of
which the noise covariance matrix is assumed to be known. Based on a
suitable factorisation of this matrix, we develop a design for the decoder’s
synthesis filter bank in order to minimise the noise power in the decoded
signal, subject to admitting perfect reconstruction through paraunitarity of
the filter bank. We demonstrate that this approach can lead to a signifi-
cant reduction of the noise interference by exploiting both the correlation
of the channel and the redundancy of the filter banks. Simulation results
providing some insight into these mechanisms are provided.

I. I NTRODUCTION

The redundancy and design freedom afforded by oversam-
pled filter banks (OSFBs) has in the past been exploited for ro-
bustness towards quantisation of subband signals [1], [2], [3],
reconstruction of erased or erroneously received subband sam-
ples [4], [5], or for the design of error correction coders [6],
[7]. More recently in [8] a systematic parallelism between block
codes and oversampled filter bank systems for channel coding
has been drawn, whereby the system design is based on unquan-
tised “soft-input” signals [9].

The channel coding schemes in [2], [3], [6], [7], [8], [9] are
based on an encoding stage using a preset analysis filter bank.
The design freedom afforded in the decoding stage formed by
the oversampled synthesis filter bank is then utilised to find the
solution that reconstructs the signal — either perfectly or in the
mean square error sense — while ideally projecting away from
the noise. The filter banks in [6], [7], [8], [9] are constructed
from FFTs, which leads to low cost implementations, have been
shown to be very robust towards burst-type errors, and are easily
compatibility with OFDM-based modulation system.

If the additive channel noise is correlated, the projection in [8]
is performed in the direction of the principal components of the
noise subspace, which ideally is restricted such that a noise-free
signal subspace exists. Also, in [6], [7], [8], [9] the synthe-
sis design is, despite some degrees of freedom (DOFs) due to
oversampling, limited by the a-priori choice of the analysis fil-
ter bank. In [10], the synthesis filter bank is given more flexibil-
ity by aiming the design at the suppression of the channel noise
under the constraint of invertibility, such that an analysis filter
bank encoder can be derived from the synthesis bank. However,
the filter bank design in [10] is based on a crude iterative method
that can prove the potential of the approach but is otherwise far
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from optimal.
Therefore, in this paper we follow the channel coding scheme

in [10] for a correlated additive Gaussian noise channel, but ap-
ply a considerably improved constrained synthesis filter bank
design method based on the second order sequential best ro-
tation (SBR2) algorithm [11]. By linking the remaining noise
variance after decoding to the covariance matrix of the chan-
nel noise in dependency of the synthesis filter bank, a suitable
broadband eigenvalue decomposition using SBR2 leads to a pa-
raunitary filter bank design that exploits both the correlation of
the channel noise as well as the DOFs provided by the OSFBs.

The paper is organised as follows. Based on a brief descrip-
tion of filter banks in Sec. II, the general channel coding struc-
ture is presented. With the aim of minimising the impact of ad-
ditive channel noise on the decoded signal, we derive a noise
power term, which can be utilised as a cost function for the
channel coder design. The proposed constrained optimisation
scheme for the synthesis filter bank is outlined in Sec. III, which
aims to minimise the channel noise power at the decoder output
subject to the filter bank being paraunitary and therefore per-
fectly reconstructing. Some insight into the functioning of the
channel coder design is provided by simulation in Sec. IV. Con-
clusions are drawn in Sec. V.

In terms of notation, vector quantities are denoted by ei-
ther lowercase boldface or underscored variables, such asv
or V , while matrix quantities are boldface uppercase, such as
R. Indexed vectors or matrices refer to quantities with polyno-
mial entries, such asH(z). Finally, a transform pair, such as
the Fourier or z-transform, is denoted ash[n] ◦—• H(ejΩ) or
h[n] ◦—• H(z), respectively.

II. SYSTEM MODEL

Based on the description of basic filter bank structures in
Sec. II-A and their polyphase description in Sec. II-B, a model
of the proposed encoder and decoder together with the transmis-
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Fig. 1. Subband decomposition of a signalX(z).
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sion model is discussed in Sec. II-C.

A. Oversampled Filter Banks

Fig. 1 shows a general filter bank structure comprising of an
analysis and a synthesis stage. The analysis filter bank splits
a fullband signalX(z) into K frequency bands by a series of
bandpass filtersHk(z) , k = 0, 1, . . . ,K − 1, and decimates
by a factorN ≤ K, resulting in so-called “subband” signals
Yk(z). The dual operation of reconstructing a fullband signal
from theK subband signals is accomplished by a synthesis fil-
ter bank, where upsampling byN is followed by interpolation
filtersGk(z), k = 0, 1, . . . ,K − 1.

The purpose of oversampling by a ratioK/N > 1 rather than
a critical decimation byK has application specific reasons, and
has in the past, for example, enabled subband adaptive filter-
ing techniques for acoustic echo cancellation [12], beamform-
ing [13], [14], [15], or equalisation [16] by permitting indepen-
dent processing of the subband signals. In these cases, the filters
have to be highly frequency selective, and the redundancy in-
troduced through oversampling is located in the spectral overlap
region of the filters within the filter bank system.

The redundancy afforded by OSFBs has more recently at-
tracted attention for channel coding [6], [7]. There, a code rate
N/K < 1 can ensure robustness against noise interference, with
the aim of restoring noise corrupted samples due to the redun-
dant format in which the data is transmitted. The analysis and
synthesis filter banks function as encoder and decoder, while the
filtersHk(z) andGk(z) are no longer limited to a bandpass de-
sign, but will rather be selected according to the characteristics
of the interfering noise.

B. Polyphase Matrices

For implementation and analysis purposes, OSFBs as shown
in Fig. 1 are conveniently represented by polyphase analysis and
synthesis matrices. The former is based on a type-I polyphase
expansion of the analysis filtersHk(z) [17]

Hk(z) =
N−1∑
n=0

z−nHk,n(zN ) , (1)

with polyphase componentsHk,n(z), and a type-II decomposi-
tion [17] of the input signalX(z)

X(z) =
N−1∑
n=0

z−N+n−1Xn(zN ) (2)
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with polyphase componentsXn(z). This allows us to denote the
vector of subband signals,Y (z) as Y0(z)

...
YK−1(z)


︸ ︷︷ ︸

Y (z)

=

 H0,0(z) . . . H0,N−1(z)
...

...
...

HK−1,0(z). . .HK−1,N−1(z)


︸ ︷︷ ︸

H(z)

 X0(z)
...

XN−1(z)


︸ ︷︷ ︸

X(z)

.

(3)
Therefore, the filter bank can be represented by a demultiplex-
ing of the input signal intoN lines, followed by a multiple-input
multiple-output (MIMO) system described by the polyphase
analysis matrixH(z). This structure is seen as part of Fig. 2.

Analogously, a polyphase synthesis matrixG(z) ∈
CN×K(z) can be defined based on a polyphase expansion of
Gk(z), yielding the synthesis filter bank representation in Fig. 2
comprisingG(z) followed by anN fold multiplexer.

A filter bank system is perfectly reconstructing if

G(z)H(z) = z−∆IN . (4)

The design of such a system can be demanding in terms of the
number of coefficients that need to be optimised. A reduction of
the parameter space by, for example, deriving allK filters from
a prototype by modulation [2], [18] or by permitting only sym-
metric filter impulse responses [18], [4] often makes the prob-
lem tractable.

C. Setup and Channel Coder

The overall model of the considered system is provided in
Fig. 2. In the transmitter, theN polyphase components ofX(z)
are encoded by the polyphase analysis matrixH(z). The trans-
mission could either employK separate channels as shown in
Fig. 2, or multiplex theK encoder outputs onto a single sig-
nal transmitted over a single-input single-output channel. This
channel is subject to corruption by additive Gaussian wide-
sense-stationary (WSS) noise, and for simplicity is assumed to
be non-dispersive.

In the case of a dispersive channel, the model in Fig. 2 can
also be applied, if an ideal zero-forcing (ZF) equaliser is em-
ployed prior to decoding by the polyphase synthesis matrix
G(z). While the channel and the ZF equaliser annihilate each
other for the signal path, in the noise path the ZF equaliser can
be absorbed into the innovations filter model producing the ad-
ditive noise componentsWk(z), k = 0, 1, . . . ,K − 1. This
absorption would result in an additional shaping of the chan-
nel noise corrupting theK received signalŝYk(z), and provide
an additional incentive for channel coding that can exploit the
spatio-temporal structure of the noise.

Fig. 2. General setup of a channel coder
based onK channel analysis and syn-
thesis filter banks, arranged around the
transmission overK additive Gaussian
noise channels.
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In the receiver after decoding, the polyphase components
X̂n(z) can be collected similar toX(z) in (3) in a vectorX̂(z),
which is given by

X̂(z) = G(z) (Y (z) + W (z)) (5)

wherebyY (z) = H(z)X(z) ∈ CK(z) andW (z) ∈ CK(z)
contain the subband signal components of the transmitted data
and the noise, respectively. Selecting perfect reconstruction fil-
ter banksG(z)H(z) = IN ,

E(z) = X(z)− X̂(z) = −G(z)W (z) (6)

is obtained.
In order to assess the total received noise varianceσ2

e in X̂(z),
let theN -element vectore[m] contain theN time series asso-
ciated with the z-domain quantities inE(z) •—◦ e[m], which
depend on the time indexm in the decimated domain. Thus we
have

σ2
e =

1
N

tr{E
{
e[m] eH[m]

}
} , (7)

where tr{·} denotes trace andE{·} is the expectation operator.
Defining the auto-correlation matrix

Ree[τ ] = E
{
e[m] eH[m− τ ]

}
(8)

and its z-transform Ree(z) •—◦ Ree[τ ] denoting the power
spectrum of the processe[m] [17], the noise variance is given
by

σ2
e =

1
N

tr{Ree[0]} =
1
N

tr{Ree(z)}
∣∣
z=0

(9)

=
1
N

tr{G(z)Rww(z)G̃(z)}
∣∣
z=0

. (10)

The notation in (10) uses the parahermitian operator{̃·}, which
applies a complex conjugate transposition and a time rever-
sal [17] to its operand. Note that (6) has been exploited to trace
the noise variance back to the power spectrumRww(z), which
is thez-transform of the covariance matrix of the channel noise,

Rww[τ ] = E
{
w[m] wH[m− τ ]

}
(11)

with w[m] ◦—• W (z) as defined in Fig. 2.

III. C HANNEL CODER AND FILTER BANK DESIGN

Based on the idea of the channel coder outlined in Sec. III-
A, this section considers a suitable factorisation of the power
spectrum at the decoder output in Sec. III-B, admitting a useful
coder design in Sec. III-C. An algorithm to construct filter banks
achieving this design is reviewed in Sec. III-D.

A. Proposed Coding Approach

It is the quantityσ2
e in (7) which is generally minimised in

some sense in channel coding. In [8], for a givenH(z), the de-
grees of freedom (DOFs) in the design ofG(z) are exploited to
minimiseσ2

e in the MSE sense. Note however that this approach
limits the DOFs that can be dedicated to fit the synthesis matrix
to the spatio-temporal structure of the noise.

Therefore, we proposed to minimise (7) by optimisingG(z)
without restriction by a specificH(z). The only condition
placed onG(z) is that it admits a right inverseG†(z) such that
G(z)G†(z) = z−∆. A stronger restriction than simple invert-
ibility placed onG(z) is paraunitarity, which however has two
important advantages: (i) the analysis filter banks is immedi-
ately given byH(z) = G̃(z), and (ii) paraunitarity provides
a minimum norm solution such that the transmit power is lim-
ited. As a counter example, an invertibleG(z) might elicit an
ill-conditionedH(z) which may attempt to transmit highly pow-
ered signals over subspaces associated with near rank deficiency.

B. Factorisation of the Noise Covariance Matrix

We approach the minimisation of (10) via a factorisation of
the power spectrum

Rww(z) = U(z)Γ(z)Ũ(z) (12)

such thatU(z) ∈ CK×K(z) is paraunitary and strongly decor-
relatesRww(z), i.e.

Γ(z) = diag{Γ0(z), Γ1(z), . . . ΓK−1(z)} (13)

is a diagonal matrix with polynomial entriesΓk(z). This factori-
sation presents a broadband eigenvalue decomposition, which
can be further specified by demandingΓ(z) to be spectrally ma-
jorised [19], [11] such that the power spectral density (PSD) of
thekth noise componentΓk(ejΩ) = Γk(z)

∣∣
z=ejΩ evaluated on

the unit circle obeys

Γk(ejΩ) ≥ Γk+1(ejΩ) ∀Ω and k = 0, 1, . . . ,K − 2,
(14)

similar to the ordering of the singular values in a singular value
decomposition. Note that paraunitarity or losslessness ofU(z)
conserves power, i.e. tr{Γ(z)}|z=0 = tr{Rww(z)}|z=0.

C. Channel Coding Design

Using the redundancyN < K due to oversampling, we can
constructG(z) from U(z) to select the lower (and therefore
smallest)N elements on the main diagonal ofΓ(z). Let

U(z) = [U0(z) U1(z) · · · UK−1(z)] , (15)

then

G(z) =


ŨK−N (z)

ŨK−N+1(z)
...

ŨK−1(z)

 ∈ CN×K(z) , (16)

such thatG(z)U(z) = [0N×K−N IN ]. If

Γ(z) =
[

Γ00(z) Γ01(z)
Γ10(z) Γ11(z)

]
(17)

with Γ11(z) ∈ CN×N and the remaining sub-matrices of ap-
propriate dimension, then the noise power at the decoder output
becomes

σ2
e =

1
N

tr{Γ11(z)}
∣∣
z=0

(18)

=
1
N

K−1∑
i=K−N

2π∫
0

Γi(ejΩ) dΩ . (19)
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Therefore, the spectral majorisation in the broadband eigenvalue
decomposition (12) is essential to the success of the proposed
channel coder design.

D. Sequential Best Rotation Algorithm

In order to achieve the factorisation in (12) fulfilling spectral
majorisation according to (14), we use the second order sequen-
tial best rotation (SBR2) algorithm [11]. In the following, only
a brief description of the algorithm is provided, while for an in-
depth treatment the reader is referred to [11], [20].

SBR2 is an iterative broadband eigenvalue decomposition
technique based on second order statistics only and can be seen
as a generalisation of the Jacobi algorithm. The decomposition
afterL iterations is based on a paraunitary matrixUL(z),

UL(z) =
L∏

i=0

QiΛi(z) (20)

wherebyQi is a Givens rotation and the matrixΛi(z) a parau-
nitary matrix of the form

Λi(z) = I− vivH
i + z−∆ivivH

i (21)

with vi = [0 · · · 0 1 0 · · · 0]H containing zeros except for
a unit element in theδith position. ThusΛi(z) is an identity
matrix with theδith diagonal element replaced by a delayz−∆i .

At the ith step, SBR2 will eliminate the largest off-diagonal
element of the matrixUi−1(z)Rww(z)Ũi−1(z), which is de-
fined by the two corresponding sub-channels and by a specific
lag index. By delaying the two contributing sub-channels ap-
propriately with respect to each other by selecting the position
δi and the delay∆i, the lag value is compensated. Thereafter a
Givens rotationQi can eliminate the targeted element such that
the resulting two terms on the main diagonal are ordered in size,
leading to a diagonalisation and at the same time accomplishing
a spectral majorisation.

Hence, each step comprises of optimising the parameter set
{δi, ∆i, θi}. While the largest off-diagonal element in
Ui−1(z)Rww(z)Ũi−1(z) is eliminated, the remainder of the
matrix is also affected. In extensive simulations, SBR2 has
proven very robust and stable in achieving both a diagonalisa-
tion and spectral majorisation of any given covariance matrix,
whereby the algorithm is stopped either after reaching a certain
measure for suppressing off-diagonal terms or after exceeding a
defined number of iteration [11], [20]. The orderOOSFB of the
filter bank defined by the paraunitary polyphase matrixUL(z)
is bounded byOOSFB ≤

∑L
i=0 ∆i. Since the individual delays

∆i are optimised by the algorithm and not known a priori, the
filter bank orderOOSFB cannot be determined or limited priori
to applying SBR2 to the power spectral matrixRww(z).

IV. SIMULATIONS AND RESULTS

To illustrate the proposed channel coding design, three design
examples are demonstrated in the following. The first design
assumes an independent transmission acrossK sub-channels,
while the latter two are based on a time multiplexed transmission
leading to correlation between theK virtual sub-channels.
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Fig. 3. PSDs on the main diagonals of (top) the power spectrumRww(z) of
the channel noise consisting of theRk(ejΩ) of (22) and (bottom)Γ(z) after
application of the SBR2 algorithm.

A. Multichannel Transmission

We assume the transmission scenario shown in Fig. 2,
wherebyK sub-channels are available and are corrupted by
Gaussian noise processeswk[m], k = 0, 1, . . . ,K − 1, such
that

E{wk[m]wj [m−τ ]} =
{

0 for k 6= j;
rk[τ ] ◦—• Rk(ejΩ) for k = j.

(22)
Specifically, for the example below, we assume thatK = 6 and
that thewk[m] are produced by uncorrelated unit variance and
zero mean Gaussian processes by passing through innovation
filterspk[m] ◦—• Pk(z) [21],

P0(z)
P1(z)
P2(z)
P3(z)

 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·


1

z−1

z−2

z−3


P4(z) = P5(z) = 10 , (23)

such thatrk[τ ] =
∑

m pk[m] p∗k[m − τ ]. The resulting power
spectrumRww(z) is a diagonal matrix with PSDsRk(ejΩ) as
defined in (22) and shown in Fig. 3 (top) on its diagonal.

Prior to running the SBR2 algorithm onRww(z), its purely
diagonal structure must be perturbed through the application
of an arbitrary paraunitary matrix. Thereafter, independent of
this perturbation, SBR2 achieves a diagonalisation ofΓ(z) af-
ter L ≈ 250 iterations, whereby a ratio of approximately10−3

between the energy of off-diagonal and on-diagonal terms is
reached. However, recall from (17) – (19) that the minimisation
of the noise powerσ2

e at the decoder output does not necessitate
the diagonality ofΓ(z) but does strongly depend on its spectral
majorisation. To examine the latter after convergence of SBR2,
the PSDs of the main diagonal elements,Γk(ejΩ), are depicted
in Fig. 3 (bottom). Quite clearly, except for a low-power re-
gion of the bandsΓ4(ejΩ) andΓ5(ejΩ) nearΩ = π, spectral
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majorisation has been achieved in the sense of (14). Interest-
ingly, the general shape of the PSDs in Fig. 3 (bottom) closely
follows those in Fig. 3 (top), but frequency intervals have been
re-assigned to different sub-channels and ordered in descending
power.
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Fig. 4. Variances of (left) uncoded noise,rk[0], and (right) coded sub-channels,
γk[0] = 1

2π

∫ 2π
0 Γk(ejΩ)dΩ.

Integrating over the PSDs in Fig. 3 provides the noise vari-
ance of the various sub-channels, which are illustrated in Fig. 4
for Rww(z) and Γ(z) without and with coding, respectively.
The coder would then utilise thoseN coded sub-channels repre-
sented inΓ(z) that carry the lowest noise power. TheseN coded
sub-channels convey theN polyphase components of the trans-
mitted signalX(z), which according to Fig. 4 are subject to dif-
ferent levels of noise. Note that the polyphase component trans-
mitted over the lowest sub-channel provides the best protection
again noise, while noise introduced on higher sub-channels in-
creases in power. This fact can be exploited for unequal error
protection for, for example, high quality high-speed video trans-
mission.

In order to demonstrate how the residual noise power in the
decoded sub-channels depends on the order of the filter bank,
Fig. 5(top) provides an evolution of the total received noise
power in dependence on the number of iterations used for SBR2
and on the number of selected sub-channelsN . If all sub-
channels are selected, i.e.N = K = 6, no redundancy can
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Fig. 5. (top) cumulative variance ofN subchannels containing the lowest noise
power afterL iterations of SBR2 and (bottom) filter bank order afterL iter-
ations; the curves are averaged over 50 random trials with different parauni-
tary matrices perturbing the originally diagonalRww(z); γk[0] is defined
in Fig. 4;

be exploited and the total noise power cannot be reduced. For
N < 4, the channel characteristics permit the exploitation of
low-noise subspaces, which is achieved through spectral majori-
sation of the power spectrum due to the filter banks. Note that
in Fig. 5 initially a small degradation of the cumulative noise
powers forN < 6 with respect to (22) occurs as a result of
the random perturbance of the diagonalRww(z) by an arbitrary
paraunitary matrix. It is evident from Fig. 5, that the required
filter order, and therefore the complexity of the resulting filter
bank, depends on the code rate, i.e. the lowerN and hence the
higher the oversampling ratio, the more iterations are required
to fully exploit the available potential in reducing the output
noise powerσ2

e =
∑K−1

k=K−N γk[0]. The order of the polynomial
matrix UL(z), and therefore the filter bank matricesH(z) and
G(z) afterL iterations is given in Fig. 5(bottom), whereby tails
of the filters can be truncated if a lower numerical resolution is
sufficient. In the case of channel coding, infinite numerical pre-
cision would be wasteful, while quantisation noise is acceptable
if its power is well below the level of residual channel noise in
Fig. 5(top).

If a decimation factor ofN = 2 is chosen for the filter banks,
only the two coded sub-channels with the lowest noise variance
in Fig. 4 (right) will be utilised. The reduction in noise power
results in an SNR enhancement of the coded scheme with re-
spect to a transmission scenario of identical symbol throughput
based on maximum ratio combining of theK = 6 channels in
Fig. 4 (left) of 7.5 dB. Note that a maximum ratio combiner uses
a zero order diagonalG(z) and accordinglyH(z), with the el-
ements inversely proportional to the standard deviation of the
noise in the sub-channels.

Some insight into how the reduction of noise power is gained
by the proposed coding method for the caseN = 2 is demon-
strated in Fig. 6, where the resulting characteristics of aK = 6
channel filter bank decimated byN = 2 are shown. The dis-
played characteristics refer to the filter bank structure given in
Fig. 1, and are plotted against the PSDs of the channel noise
afterN = 2 fold expansion. Fig. 6 very clearly underlines the
functioning of the coder, which effectively excludes the two sub-
channels with high noise power from transmission, while in all
other sub-channels the transmitted power is concentrated in fre-
quency bands where the noise PSD assumes its lowest values.

B. Time-Multiplexed Transmission

In the following we consider the case where the noise in the
K sub-channels in Fig. 2 may be mutually correlated. This
can occur through a time multiplexed transmission of theK en-
coded symbols over the same channel corrupted by noisew[m],
which is assumed to be modelled as a unit variance zero mean
Gaussian WSS process undergoing an innovation filterp[m].
Therefore, the auto-correlation function ofw[m] is given by
r[τ ] =

∑
m p[m]p∗[m − τ ] ◦—• R(z). After demultiplexing

into K channels in the receiver, the resulting noise power spec-
trumRww(z) can be shown to be given by the pseudo-circulant
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Fig. 6. PSDs of channel noise processeswk[m], k = 0, 1, . . . , K − 1,
decimated byN = 2 (dashed) and magnitude responses of the filters
|Gk(ejΩ)| = |Hk(ejΩ)| (solid).

matrix

Rww(z) =


R0(z) R1(z) · · · RK−1(z)

z−1RK−1(z) R0(z) RK−2(z)
...

...
...

...
z−1R1(z) · · · z−1RK−1(z) R0(z)


(24)

containing the K polyphase componentsRk(z), k =
0, 1, . . . ,K − 1, of R(z),

R(z) =
K−1∑
k=0

Rk(zK)z−k . (25)

Channel I.In a first case, the multiplex channel is assumed to
be corrupted by an interfering radio signal occupying a quarter
of the available bandwidth. The interference is modelled by a
zero mean unit variance white Gaussian noise exciting a 49th or-
der bandpass FIR filter, which results in the channel noise PSD
shown in Fig. 7. The PSD within each of the sub-channels de-
scribed byRww(z) for any givenK is identical. Here, different
from Sec. IV-A the coder has to additionally exploit the correla-
tion between theK sub-channels. After application of the SBR2
algorithm, the reduction in noise power — the ratio between the
output power of the coder to the power of the channel noise pro-
cessw[m] — for various choices ofK and N is depicted in
Fig. 8. In comparison to maximum ratio combining with identi-

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Fig. 7. Channel noise PSD in time multiplex channel II.
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Fig. 8. Noise reduction achieved by the proposed coding scheme over channel
II characterised in Fig. 7.

cal symbol throughput, the proposed coder in general performs
consistently and considerably better, whereby an increase inK
permits both a finer resolution to exploit spatial correlation as
well as the use of more flexible code ratesN/K.

The proposed channel coder can exploit the spectral charac-
teristics of the channel noise well, and, provided a sufficient res-
olution of the code rate, exhibits an approximately constant out-
put noise power once the code rate reaches the approximately
interference-free relative bandwidth of75% available over the
channel.
Channel II. We select a power line communication channel
(PLC), whose PSD in a worst case scenario can be modelled
as [22]

Slog(f) = 38.75|f |−.72 dBm/Hz . (26)

Sampled at 30 MHz, an iterative least squares fit has been em-
ployed to derive an FIR innovation filter with 256 coefficients to
produce the PSD characterised in (26) [23]. Applying SBR2
to the resulting noise power spectrumR(z), an example for
the resulting spectral majorisation is given in Fig. 9 for a de-
composition intoK = 20 channels, for which SBR2 yields
a 37th order filter bank matrixH(z). The latter is reached
with a stopping criterion of103 for the ratio between the to-
tal power and the power contained in off-diagonal elements in
UL(z)Rww(z)ŨL(z). For this broadband eigenvalue decom-
position, a single strong eigenmode of the noise is clearly vis-
ible. Therefore, if oversampling is applied and the strongest
eigenmodes of the noise subspace can be de-selected form trans-
mission, the noise power in the decoded signal in the receiver
can be significantly reduced. The coding gain for the PLC sim-
ulation model in (26) is given in Fig. 10 for various selections
of channelsK, and compared to maximum ratio combining by
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Fig. 9. Spectral majorisation in the decomposition of the noise power spectral
matrixR(z) by SBR2 forK = 20 channels.
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Fig. 10. Coding gain of the OSFB coder applied to the PLC channel defined in
(26) for various values ofK and different code rates.
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Fig. 11. BER for coding usingM -QAM and OSFB and BCH channel coding,
in dependency on the code rate.

repeated transmission of symbols over an otherwise uncoded
channel.

Fig. 10 suggests that the OSFB approach can provide consid-
erable coding gain at a high code rate close to unity for the case
of highly correlated noise. In order to exploit this,K has to be
chosen sufficiently large in order to offer a high resolution with
respect to possible code rates.

In the following we consider transmitting quadrature ampli-
tude modulated (QAM) symbols over the OSFB coded PLC
channel. For a channel SNR of 3dB, Fig. 11 presents results
for different code rates for a QPSK / 4-QAM and a 16-QAM
based transmission.

As a comparison, we also present results for a (63,NBCH)

BCH coded PLC channel, whereNBCH is varied to achieve var-
ious code rates [23]. The BCH encoded bit stream isM -QAM
mapped and transmitted over the PLC channel. In the receiver,
after slicing and demapping, a BCH decoder aims to recover
the original bit stream. A (37,20) matrix interleaver, imposing
the same processing delay as the OSFB coder, is set to assist in
breaking up noise correlation and burst-type errors. Although
its computational complexity is higher than the various BCH
coders, it is clear that the OSFB coder provides superior pro-
tection against correlated channel noise, and almost enables the
use of 16-QAM rather than QPSK as opposed to a BCH coder,
thus nearly doubling the data throughput without sacrificing er-
ror protection.

V. CONCLUSIONS

In this paper we have proposed a channel coding approach
based on OSFBs by first designing a decoder that minimises
the influence of correlated channel noise in the receiver, and
thereafter obtaining the encoder. By demanding paraunitarity
for the decoding OSFB, the latter step is trivial and ensures a
strict bound on the transmitted power. An OSFB design method
has been proposed, which is based on a broadband eigenvalue
decomposition and demonstrates good performance in suppress-
ing the correlated channel noise. Some insight into the effects of
the design have been given by considering transmission scenar-
ios overK independent channels or by time multiplex transmis-
sion, where the exploitation of spatial or spectral correlations
can bring substantial benefits over a transmission of identical
symbol throughput using maximum ratio combining of the sub-
channels.

The SNR enhancement gained from the proposed coding ar-
chitecture can be utilised in conjunction with the transmission
of quantised data such as found in binary phase shift keying
or multilevel quadrature amplitude modulation symbols, such
that the occurrence of symbol or bit errors is reduced. This has
been demonstrated by considering a power line communications
scenario, whereby the proposed OSFB design can significantly
outperform standard channel coding techniques such as BCH,
offering a higher data throughput at identical protection against
errors.
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