2,009 research outputs found

    Size-dependent decoherence of excitonic states in semiconductor microcrystallites

    Full text link
    The size-dependent decoherence of the exciton states resulting from the spontaneous emission is investigated in a semiconductor spherical microcrystallite under condition aBR0λa_{B}\ll R_{0}\leq\lambda. In general, the larger size of the microcrystallite corresponds to the shorter coherence time. If the initial state is a superposition of two different excitonic coherent states, the coherence time depends on both the overlap of two excitonic coherent states and the size of the microcrystallite. When the system with fixed size is initially in the even or odd coherent states, the larger average number of the excitons corresponds to the faster decoherence. When the average number of the excitons is given, the bigger size of the microcrystallite corresponds to the faster decoherence. The decoherence of the exciton states for the materials GaAs and CdS is numerically studied by our theoretical analysis.Comment: 4 pages, two figure

    Target Space Duality between Simple Compact Lie Groups and Lie Algebras under the Hamiltonian Formalism: I. Remnants of Duality at the Classical Level

    Get PDF
    It has been suggested that a possible classical remnant of the phenomenon of target-space duality (T-duality) would be the equivalence of the classical string Hamiltonian systems. Given a simple compact Lie group GG with a bi-invariant metric and a generating function Γ\Gamma suggested in the physics literature, we follow the above line of thought and work out the canonical transformation Φ\Phi generated by Γ\Gamma together with an \Ad-invariant metric and a B-field on the associated Lie algebra g\frak g of GG so that GG and g\frak g form a string target-space dual pair at the classical level under the Hamiltonian formalism. In this article, some general features of this Hamiltonian setting are discussed. We study properties of the canonical transformation Φ\Phi including a careful analysis of its domain and image. The geometry of the T-dual structure on g\frak g is lightly touched.Comment: Two references and related comments added, also some typos corrected. LaTeX and epsf.tex, 36 pages, 4 EPS figures included in a uuencoded fil

    Numerical study of the effects of crack location on creep crack growth in weldment

    Get PDF
    A numerical study on the effects of crack location on creep crack growth, in a P91 weldment, was carried out using a finite element package (ABAQUS). Models of compact tension specimens were used. The obtained results showed that, the creep crack growth in the weld metal are much higher than that in the parent metal. However, the creep crack growth in cross-weld specimens is controlled by the properties of the weakest component of the weld. This highlights the importance of the heat affected zone (HAZ) as the weakest region of the weldment. Effects of the width of HAZ are presented, too

    Generation of maximum spin entanglement induced by cavity field in quantum-dot systems

    Full text link
    Equivalent-neighbor interactions of the conduction-band electron spins of quantum dots in the model of Imamoglu et al. [Phys. Rev. Lett. 83, 4204 (1999)] are analyzed. Analytical solution and its Schmidt decomposition are found and applied to evaluate how much the initially excited dots can be entangled to the remaining dots if all of them are initially disentangled. It is demonstrated that the perfect maximally entangled states (MES) can only be generated in the systems of up to 6 dots with a single dot initially excited. It is also shown that highly entangled states, approximating the MES with a good accuracy, can still be generated in systems of odd number of dots with almost half of them being excited. A sudden decrease of entanglement is observed by increasing the total number of dots in a system with a fixed number of excitations.Comment: 6 pages, 7 figures, to appear in Phys. Rev.

    Effect of inelastic scattering on parametric pumping

    Full text link
    Pumping of charge in phase-coherent mesoscopic systems due to the out-of-phase modulation of two parameters has recently found considerable interest. We investigate the effect of inelastic processes on the adiabatically pumped current through a two terminal mesoscopic sample. We find that the loss of coherence does not suppress the pumped charge but rather an additional physical mechanism for an incoherent pump effect comes into play. In a fully phase incoherent system the pump effect is similar to a rectification effect

    Enhanced Superconductivity in Sr2CuO4-v

    Full text link
    A critical review of previous investigations of the superconductivity with enhanced Tc ~ 95K found in Sr2CuO4-v shows that new physics occurs in a highly overdoped region of the cuprate phase diagram. Moreover, evidence is adduced from the literature that 30% of the oxygen sites in the CuO2 layers are vacant, a conclusion which is at odds with the universally made assumption that superconductivity originates in stoichiometric CuO2 layers. While further research is needed in order to identify the pairing mechanism(s) responsible for the enhanced Tc, we suggest possible candidates

    Interplanetary and Geomagnetic Consequences of Interacting CMEs of 13-14 June 2012

    Full text link
    We report on the kinematics of two interacting CMEs observed on 13 and 14 June 2012. Both CMEs originated from the same active region NOAA 11504. After their launches which were separated by several hours, they were observed to interact at a distance of 100 Rs from the Sun. The interaction led to a moderate geomagnetic storm at the Earth with Dst index of approximately, -86 nT. The kinematics of the two CMEs is estimated using data from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) onboard the Solar Terrestrial Relations Observatory (STEREO). Assuming a head-on collision scenario, we find that the collision is inelastic in nature. Further, the signatures of their interaction are examined using the in situ observations obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is also found that this interaction event led to the strongest sudden storm commencement (SSC) (approximately 150 nT) of the present Solar Cycle 24. The SSC was of long duration, approximately 20 hours. The role of interacting CMEs in enhancing the geoeffectiveness is examined.Comment: 17 pages, 5 figures, Accepted in Solar Physics Journa

    A nonlinear hydrodynamical approach to granular materials

    Full text link
    We propose a nonlinear hydrodynamical model of granular materials. We show how this model describes the formation of a sand pile from a homogeneous distribution of material under gravity, and then discuss a simulation of a rotating sandpile which shows, in qualitative agreement with experiment, a static and dynamic angle of repose.Comment: 17 pages, 14 figures, RevTeX4; minor changes to wording and some additional discussion. Accepted by Phys. Rev.

    Quantum critical point and scaling in a layered array of ultrasmall Josephson junctions

    Full text link
    We have studied a quantum Hamiltonian that models an array of ultrasmall Josephson junctions with short range Josephson couplings, EJE_J, and charging energies, ECE_C, due to the small capacitance of the junctions. We derive a new effective quantum spherical model for the array Hamiltonian. As an application we start by approximating the capacitance matrix by its self-capacitive limit and in the presence of an external uniform background of charges, qxq_x. In this limit we obtain the zero-temperature superconductor-insulator phase diagram, EJcrit(EC,qx)E_J^{\rm crit}(E_C,q_x), that improves upon previous theoretical results that used a mean field theory approximation. Next we obtain a closed-form expression for the conductivity of a square array, and derive a universal scaling relation valid about the zero--temperature quantum critical point. In the latter regime the energy scale is determined by temperature and we establish universal scaling forms for the frequency dependence of the conductivity.Comment: 18 pages, four Postscript figures, REVTEX style, Physical Review B 1999. We have added one important reference to this version of the pape
    corecore