2,009 research outputs found
Size-dependent decoherence of excitonic states in semiconductor microcrystallites
The size-dependent decoherence of the exciton states resulting from the
spontaneous emission is investigated in a semiconductor spherical
microcrystallite under condition . In general, the
larger size of the microcrystallite corresponds to the shorter coherence time.
If the initial state is a superposition of two different excitonic coherent
states, the coherence time depends on both the overlap of two excitonic
coherent states and the size of the microcrystallite. When the system with
fixed size is initially in the even or odd coherent states, the larger average
number of the excitons corresponds to the faster decoherence. When the average
number of the excitons is given, the bigger size of the microcrystallite
corresponds to the faster decoherence. The decoherence of the exciton states
for the materials GaAs and CdS is numerically studied by our theoretical
analysis.Comment: 4 pages, two figure
Target Space Duality between Simple Compact Lie Groups and Lie Algebras under the Hamiltonian Formalism: I. Remnants of Duality at the Classical Level
It has been suggested that a possible classical remnant of the phenomenon of
target-space duality (T-duality) would be the equivalence of the classical
string Hamiltonian systems. Given a simple compact Lie group with a
bi-invariant metric and a generating function suggested in the physics
literature, we follow the above line of thought and work out the canonical
transformation generated by together with an \Ad-invariant
metric and a B-field on the associated Lie algebra of so that
and form a string target-space dual pair at the classical level under
the Hamiltonian formalism. In this article, some general features of this
Hamiltonian setting are discussed. We study properties of the canonical
transformation including a careful analysis of its domain and image. The
geometry of the T-dual structure on is lightly touched.Comment: Two references and related comments added, also some typos corrected.
LaTeX and epsf.tex, 36 pages, 4 EPS figures included in a uuencoded fil
Numerical study of the effects of crack location on creep crack growth in weldment
A numerical study on the effects of crack location on creep crack growth, in a P91 weldment, was carried out using a finite element package (ABAQUS). Models of compact tension specimens were used. The obtained results showed that, the creep crack growth in the weld metal are much higher than that in the parent metal. However, the creep crack growth in cross-weld specimens is controlled by the properties of the weakest component of the weld. This highlights the importance of the heat affected zone (HAZ) as the weakest region of the weldment. Effects of the width of HAZ are presented, too
Generation of maximum spin entanglement induced by cavity field in quantum-dot systems
Equivalent-neighbor interactions of the conduction-band electron spins of
quantum dots in the model of Imamoglu et al. [Phys. Rev. Lett. 83, 4204 (1999)]
are analyzed. Analytical solution and its Schmidt decomposition are found and
applied to evaluate how much the initially excited dots can be entangled to the
remaining dots if all of them are initially disentangled. It is demonstrated
that the perfect maximally entangled states (MES) can only be generated in the
systems of up to 6 dots with a single dot initially excited. It is also shown
that highly entangled states, approximating the MES with a good accuracy, can
still be generated in systems of odd number of dots with almost half of them
being excited. A sudden decrease of entanglement is observed by increasing the
total number of dots in a system with a fixed number of excitations.Comment: 6 pages, 7 figures, to appear in Phys. Rev.
Effect of inelastic scattering on parametric pumping
Pumping of charge in phase-coherent mesoscopic systems due to the
out-of-phase modulation of two parameters has recently found considerable
interest. We investigate the effect of inelastic processes on the adiabatically
pumped current through a two terminal mesoscopic sample. We find that the loss
of coherence does not suppress the pumped charge but rather an additional
physical mechanism for an incoherent pump effect comes into play. In a fully
phase incoherent system the pump effect is similar to a rectification effect
Enhanced Superconductivity in Sr2CuO4-v
A critical review of previous investigations of the superconductivity with
enhanced Tc ~ 95K found in Sr2CuO4-v shows that new physics occurs in a highly
overdoped region of the cuprate phase diagram. Moreover, evidence is adduced
from the literature that 30% of the oxygen sites in the CuO2 layers are vacant,
a conclusion which is at odds with the universally made assumption that
superconductivity originates in stoichiometric CuO2 layers. While further
research is needed in order to identify the pairing mechanism(s) responsible
for the enhanced Tc, we suggest possible candidates
Interplanetary and Geomagnetic Consequences of Interacting CMEs of 13-14 June 2012
We report on the kinematics of two interacting CMEs observed on 13 and 14
June 2012. Both CMEs originated from the same active region NOAA 11504. After
their launches which were separated by several hours, they were observed to
interact at a distance of 100 Rs from the Sun. The interaction led to a
moderate geomagnetic storm at the Earth with Dst index of approximately, -86
nT. The kinematics of the two CMEs is estimated using data from the Sun Earth
Connection Coronal and Heliospheric Investigation (SECCHI) onboard the Solar
Terrestrial Relations Observatory (STEREO). Assuming a head-on collision
scenario, we find that the collision is inelastic in nature. Further, the
signatures of their interaction are examined using the in situ observations
obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is
also found that this interaction event led to the strongest sudden storm
commencement (SSC) (approximately 150 nT) of the present Solar Cycle 24. The
SSC was of long duration, approximately 20 hours. The role of interacting CMEs
in enhancing the geoeffectiveness is examined.Comment: 17 pages, 5 figures, Accepted in Solar Physics Journa
A nonlinear hydrodynamical approach to granular materials
We propose a nonlinear hydrodynamical model of granular materials. We show
how this model describes the formation of a sand pile from a homogeneous
distribution of material under gravity, and then discuss a simulation of a
rotating sandpile which shows, in qualitative agreement with experiment, a
static and dynamic angle of repose.Comment: 17 pages, 14 figures, RevTeX4; minor changes to wording and some
additional discussion. Accepted by Phys. Rev.
Quantum critical point and scaling in a layered array of ultrasmall Josephson junctions
We have studied a quantum Hamiltonian that models an array of ultrasmall
Josephson junctions with short range Josephson couplings, , and charging
energies, , due to the small capacitance of the junctions. We derive a new
effective quantum spherical model for the array Hamiltonian. As an application
we start by approximating the capacitance matrix by its self-capacitive limit
and in the presence of an external uniform background of charges, . In
this limit we obtain the zero-temperature superconductor-insulator phase
diagram, , that improves upon previous theoretical
results that used a mean field theory approximation. Next we obtain a
closed-form expression for the conductivity of a square array, and derive a
universal scaling relation valid about the zero--temperature quantum critical
point. In the latter regime the energy scale is determined by temperature and
we establish universal scaling forms for the frequency dependence of the
conductivity.Comment: 18 pages, four Postscript figures, REVTEX style, Physical Review B
1999. We have added one important reference to this version of the pape
- …