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Abstract

A numerical study on the effects of crack location on creep crack growth (CCG), inaP91
weldment, was carried out. The P91 weldment consists of parent material (PM), weld metal
(WM) and heat-affected zone (HAZ). Models of compact tension (CT) specimen were used.
These models are single material CT models, i.e. PM and WM, bi-material CT models, i.e. PM-
HAZ and PM-WM, and three-material CT models, i.e. PM-HAZ-WM. A commercial Finite
Element (FE) package (ABAQUS) was used to conduct the study. The results obtained showed
that, the CCG and the CCG ratesin the WM CT models are much higher than those in the PM
CT models. However, the CCG in cross-weld specimens is controlled by the properties of the
weaker component of the weld. This highlights the importance of the HAZ as the weakest
region of the weldments.

Keywords: P91, damage mechanics, finite e ement method, creep crack growth.



Nomenclature;
A

a
B

n

S ™, g

Material constant in Norton's creep law, Kachanov creep damage model,
and Liu and Murakami creep damage model

Crack length

Materia constant in Kachanov creep damage model or

full thickness of compact tension specimens

Material constant in Norton's creep law, Kachanov creep damage model,
and Liu and Murakami creep damage model

Materia constant in Liu and Murakami creep damage model

Time

Failuretime

Multiaxial parameter; material constant

Creep strain tensor

Deviatoric stress tensor

Equivalent, von Mises, stress

Stress

Maximum principal stress

Rupture stress

Materia constant in both Kachanov, and Liu and Murakami creep damage
models

Damage parameter, ranging from 0.0 (no damage) to 1.0 (full damage)
Creep strain

Creep strain rate

Material constant in Kachanov creep damage model

1 INTRODUCTION

Welding is an unavoidable manufacturing process in building up conventional power plants,

nuclear power plants or chemical plants. Some of the components of these plants operate at

temperatures which are high enough to cause their materials to creep. When cracks exist at the

weldment of these components, the situation is getting worse and these weldments become alife

limiting of the components and, possibly, of the whole plant. Four different types of cracks could

be found in welding region[2], namely Typel, Typell, Typelll and TypelV, as shown in Figure

1. Type | cracks occur within the WM, either horizonta or vertical. Type Il cracks initiate in the
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WM and grow crossthe HAZ. Similar to Type | cracks, Type Il cracks could be horizontal or
vertical. Type lll cracksinitiate and grow in the coarse grained HAZ. They normally grow
toward the root of the weld. Type IV cracks grow in fine-grained HAZ. Similar to Type I11
cracks, Type IV cracks grow toward the root of the weld. In the pipe work, Type IV cracking is
extremely important as it grows in the weakest zone of the weld and is often the cause of the

failure of the weld[2].

Typelll Typel Typell TypelV

/A

Figure 1: Four different types of cracks could be found in welded zone.

PM

Creep crack growth of Type IV cracks, for ferretic steels, has been extensively studied both
experimentally and numerically e.g. [3-7]. Hyde et a [8] predicted creep crack growth in a P9l
weld, at 650°C, using FE analyses. Compact tension specimens were used in the experimental
study and the corresponding CT models were used in the FE analyses. The results of those
analyses were compared to the experimental results and good correlation was obtained [8-9].
This correlation encourages the authors to apply the same modeling techniques to model
problems for which we do not have experimental data. Another motivation to conduct this study
isthelack of studies on the CCG behaviour in the welds which have different types of cracks,
i.e. Typel, Typell, Typelll and Type V. Therefore, in this paper, anumerical study which
compares the behaviour of these types of cracksis presented. Models of single-material CT

specimens and of multi-material, across-weld, CT specimens were used. Initial cracks were
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located at different positions to represent different types of cracks. 2D FE analyses were carried
out using acommercia FE package (ABAQUS) and the material propertiesfor a P91 weld, at
650°C. The results obtained from the FE analyses on across-weld CT models were compared to

those obtained from single material CT models.

2 MATERIALS

The materia studied is amodified 9Cr ferretic power plant steel. The 9 Cr steel wasfirstly
developed in the USin 1980s[9] as an aloy steel with high creep resistance. The 9Cr was,
primarily, used in main steam pipesin coal fired power stations. However, in order to maximize
the benefit of burning fuel and to reduce the emission of Co,, power plants had to operate at
higher temperatures and higher pressures. Therefore, new materials were needed. Hence, the 9Cr

steel was subjected to modifications and the modified-9Cr steel (P91) was manufactured.

Metal arc welding is the common welding technique used for welding P91 pipes. In order to
obtain high strength of the weldment, consumables made of P91WM were often used. The
chemical compositions of P91 PM and WM are shown in Table 1. Heat affected zone is a parent
material affected by the heat produced during the welding process. Therefore, its chemical
composition is the same as that for the PM. However, the creep properties for the HAZ are

different from those for the PM.

Table 1. Chemical compositions of P91 PM and WM, wt%, [10].

Element C Mn Si Cr Mo N Ni
PM 0.11 0.36 0.022 8.74 0.98 0.048 0.12
WM 0.087 1.07 0.28 8.6 1.02 0.04 -




3 MATERIAL BEHAVIOR MODELS

Cross-weld CT specimens consist of three material zones: PM, HAZ and WM. These three
materials are assumed to be homogenous, isotropic and follow Norton’s creep law, i.e.
&= Ao" (1)

where A and n are material constants.

A coupled creep/damage model proposed by Liu and Murakami [1] was used to predict damage
in the P91 CT models. Fully damaged e ements near the crack tip are used to represent crack

growth (see Section 5). The multiaxia form of the mode! is given by[1]:-

de’ 3 2n+1) (o i 2
i S Ag™s Expl —AED | 01 | 2 2
a 2 3 p[m/1+3/n O

and the uniaxial form the equation is given by:-

de® 2(n+1) 3/2i|
= Ac"EXp| ——=w ©)
at p[m/1+ 3/n

Damage o is evaluated using:-

da _ B(1+¢)[1- Exp(-q,
dt o)
in which o, isthe rupture stress, i.e.

16, Expa,) @

o, =ao, +(1-a)o, ©)

Where 61 and 6 are the maximum principal stress and the equivalent stress, respectively, and o

(O<a<1l)isamateria constant related to the multi-axial stress state within the material.

Integration of Eqgn. (4) under uniaxial conditions leads to:-



o=-— Ln[l— L-e )i} C)
o L

where

1
" B@+¢)o”
A n, B,y g and ¢ arematerial constants which can be obtained by curve fitting to the uniaxial

f ()
creep curves. The value of the multi-axial parameter o is obtained by fitting the failure times of
notched bar specimens, made of the PM, the WM and across the weld, to those of FE notched
bar models of the PM, WM and across the weld, respectively. Procedures used to obtain these
constants are given in [11] and summarised in [12]. The values of the material constants are

givenin Table 2, [12].

Table 2: P91 material constants for damage constitutive equations at 650 °C (¢ in MPaand timein h),

[12]
Materia A n B ) X gz o
PM 1.092x10%° 8.462 3.537x10™"' 7346 6789 32 03125
WM 1.370x10?% 7.65 1.600x10?%° 11463 7.950 50 081
HAZ 2.300x10%° 8.462 1.522x10 7346 5502 28 =05

4 FINITEELEMENT MODELS

Geometries and dimensions of the CT models used throughout this study are shown in Figure 2.
Single material CT models, shown in Figure 2 (a), are the PM mode and the WM model.
Experimentally, it is possible to cut out PM and WM CT specimens, of aweldment, and to test
them under creep conditions. However,due to the small size of the HAZ region (normally 2-4mm
width), it is not possible to cut out (and hence to test) HAZ CT specimens, unless simulated HAZ

material isused. Therefore, only the PM and WM CT’ s were modelled using the single-material



model. In all cases, theinitia crack length is 15.5mm and the specimen width is 32mm and,
hence, the ratio a/w is about 0.48. This ratio conforms with the specifications of the CT
specimens which were mentioned in ASTM-1457-00 [13]. In al of the CT models, theinitial

crack was located at the mid-way between the two loading point.

Two bi-material CT models were used in the current study. The first model consists of PM and
HAZ; namely PM-HAZ model. The second model consists of PM and WM; namely PM-WM
model. In the bi-materiad models, theinitia crack was located on the materias interface, as

shown in Figure 2 (b).

The three-material CT model, shown in Figure 2 (c), consists of PM, HAZ, and WM.
Dimensions and geometry of this model are the same as those used in the experimenta program,
[11]. The width of the HAZ in the model is 2.4mm. Three different configurations of the model
were used, as summarized in Table 3. In thefirst configuration, the initial crack was located at
the PM-HAZ boundary, namely 3mat-PM/HAZ model. The crack in this configuration
represents the Type 1V crack in aweld. In the second configuration, the initial crack was located
at the WM-HAZ boundary, namely 3mat-WM/HAZ model. The crack in this configuration
represents the Type |11 crack in aweld. In the third configuration, theinitial crack waslocated in
the middle of the sandwiched HAZ, namely 3mat-middie-HAZ. The three models were anayzed

under the same loading conditions.



Table 3: Locations of theinitial cracksin three-material models.

Model Location of theinitial cracks

3mat-PM/HAZ onthe PM-HAZ interface
3mat- middle-HAZ at the middle of HAZ

3mat-PM/WM on the PM-WM interface

A finite element commercia package (ABAQUS) [14] was used to carry out the FE analyses. 2D
plane stress elements were used to model al of the CT models, see Figure 3. In order to
minimize the processing time, fine elements were used in the vicinity of the crack tip while
coarse elements were used el sewhere. Materials properties were implemented into the analyses
by using CREEP subroutine. The CREEP subroutine works in junction with the FE analysesto
calculate creep strain and creep damage using the Liu and Murakami material model. Load and
boundary conditions were applied to the CT model viarigid pins which were modeed and

placed at pin holes. Details of load application to CT models using rigid pins are given in [11].
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Figure 2: Geometies and dimensions of the used CT models: (a) single-material model; (b) bi-materia

model, e.g. PM-WM model, and (c¢) three-material model.
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Figure 3: Finite element mesh of CT model; fine elements were used in the vicinity of the crack tip while

coarse e ements were used el sewhere.

5 RESULTSAND DISSCUSION

A set of FE analyses were carried out on different configurations of CT models using material
properties for the P91 weld, at 650°C. The Liu and Murakami model, given in equations (2),
was used to calculate creep damage, o, at each integration point of each element, where w =0
indicates that the materia is not damaged and o = 1 indicates that the material is fully damaged
(failure). Asthe value of ® approaches unity within an element, the creep strength of the material
reduces very rapidly. To modd the effects of damage, the modulus of elasticity, E, isreduced as
the o increases according to the relationship Ei.1= (1- o) Ej, where E;+1 isthe modulus of
elasticity at time increment i+1 and E; is the modulus of elasticity at time increment i.
Throughout this study, the maximum value of ®» was set to 0.99. Thisis to avoid any numerical
errors that could arise from using the maximum value of o = 1. Asthe value of » approaches the
critical value, 0.99, at an integration point within an element, its modulus of easticity, E,

approaches zero, and hence, it cannot support any more load and is, therefore, considered to be
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removed from the model, i.e. the element was failed. When this failed e ement was |ocated on

the crack path, the crack length was considered to increase by the amount of the element size.

5.1 Results of single-material models

Predicted damage in the single-material CT modelsis shown in Figure 4. It can be seen that the
damage is uniformly distributed ahead of the crack tip for the PM CT model. For the WM CT
model, the damage islocalized in anarrow zone ahead of the crack tip. Thislocalization of
damage accel erates the damage rate and, therefore, reduces the failure time of the model. The
fully damaged elements, where o = 0.99, represent the crack extension. The resulted creep crack
growthsin the single-material models are shown in Figure 5. It can be seen that the CCG curves
for the two models are quite similar; each curve has apparent steady state CCG followed by
tertiary CCG. The primary CCG has not been modelled in this study, for the sake of smplicity. It
can a so be seen that the failure time of the WM CT modél is about 5% of that for the PM CT
model. This can be attributed the brittleness of the WM compared to the PM. This brittleness can
be noticed from the uniaxial behaviour of the two material which is shown in Figure 6, [10].
Figure 7 shows that the average creep ductility of the WM is about 3.8 % which is more than an
order of magnitude that of the PM (=36%). This remarkable difference in failure ductility

justifies the remarkabl e difference in CCG, failure time between the PM and WM.

Figure 8 compares the CCG rates from the PM model to those from the WM model. It can be
seen that the creep crack growth rates for the WM are more than an order of magnitude higher
than those for the PM model. It is worth mentioning that it isimpractical to attain the damage
shown in the WM case as the specimen yield when the crack length reaches a value where the

stressin the vicinity of the crack is more than the yield stress of the CT material.
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Figure 4. Damage predictionin (a) PM CT model and (b) WM CT model.
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Figure 5: FE creep crack growths (CCG) for the PM and the WM CT models.
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Figure 6: Creep strain curves for P91 parent material and weld material.
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Figure 8: Creep crack growth rates against normalized creep crack growth, for PM and WM CT models.

5.2 Results of bi-material models

Two bi-material CT models were analyzed, i.e. the PM-HAZ model and the PM-WM model
under the same loading conditions. For the P91 weldment, it was found that the uniaxia tensile
creep strength of the WM is higher than that of the PM and the creep strength of the PM is higher
than that of the HAZ [12]. Consequently, each of the bi-material models studied consists of a
stronger material and aweaker material. Figure 9 shows the damage predicted in the PM-HAZ
and in the PM-WM models, respectively. Higher damage can be seen in the vicinity of the crack
tip in the weaker material, i.e. the HAZ in the PM-HAZ model and the PM in the PM-WM
model. Therefore, it can be said that for the bi-material situations, the creep strength of the
weakest weldment constituent largely affects the creep crack growth and, hence, the failurelife
of aweldment. Figure 10 compares the FE CCG for the bi-material modd to that of the single-
material models. It can be seen that the CCG of the PM-WM models is the same as that of the

PM model. Furthermore, athough the CCG for the PM-HAZ model has the same trend as that
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for the PM modd, the failure time for the PM-HAZ modd is about one half of that for the PM

10.00
1.00
0.10
0.01 |

Aa/At (mm/h)

0.00

0.00 : : :

04 0.5 0.6 0.7 0.8
modd. Normalised crack length (a/w)

Figure 11 compares the CCG rates for the single-material and bi-material models. It can be seen

that, except that for the WM model, CCG rates for the al of the other models are similar.

Damage, ®
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+0.000e+00

Damage, ®
+9.951e-01
+9.122e-01
+3.293e-01
+7 464201
+6.634e-01
+5.805e-01
+4.976e-01
+4 1dhe-01
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+2488e-01
+1.65%e-01
+3.2%938-02
+9.435e-24
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Figure 9: FE damage prediction in (a) PM-HAZ CT model and (b) PM-WM CT model.
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Figure 10: FE creep crack growth of bi-material CT models compared to that for single-material models.
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Figure 11: Creep crack growth rates against normalized creep crack growth for single-material and bi-

material models.

5.3 Results of three-material models

For the three-material CT models, three FE analyses were carried out under the same loading

conditions but with different crack position (see Table 3). The FE analyses were left running
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until the time increment, within the analyses, dropped to impractical values then the analyses was

stopped by the user.

Figure 12 compares the FE predicted damage, and hence the CCG, in the three-material CT
models. In all of the three cases, higher damage can be seen in the HAZ while low damage
appearsin the PM but almost no damage appears in the WM. The fully damaged elements, i.e.
where m = 0.99, are considered as CCG. The CCGs for the three-material models are shown in
Figure 13. Results of the single-material models, i.e. PM and WM, are also included. It can be
seen that, for the bi-material model, the CCG of acrack that islocated on the interface of two
materialsis the same as the CCG for the single-material model made of the weaker material.. For
the three-material models, as seen in Figure 13, the CCGs for both the 3mat-PM/HAZ and the
3mat-WM/HAZ model s are determinated by the HAZ properties. These CCGs are similar to
each others and different from those of the PM or the WM. This can be attributed to the
relatively small width of the HAZ, 2.4mm, and the constancy of material properties across the
HAZ. It can also be seen that the failure time for the 3mat-PM/HAZ and for the 3mat-WM/HAZ
are lessthat for the 3mat-middle-HAZ model. Thisis because the location of initial crack on
material interface accelerates its growth, due to high stress triaxiality found at the materials
interface. The creep crack growth rates for the three-material models are similar to that for the
PM model, see Figure 14. In Figure 14, it can be also seen that the CCG rate for the 3mat-

middle-HAZ model is dlightly less than that for 3mat-PM/HAZ and 3mat-WM/HAZ models.
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Figure 12: FE damage prediction in three-material CT models when the crack tip was located (a) on the

PM-HAZ interface, (b) at the middle of the HAZ and (c) on the WM-HAZ interface.
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Figure 13: FE creep crack growth of three-material CT models compared to that for single-material and

models.
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Figure 14: Creep crack growth rates against normalised creep crack growth for three-materials CT models

compared to those for single-material CT models.

6 CONCLUSIONS

The effects of the location of cracks on creep crack growth, in a P91 weldment, were
investigated. Single-material, bi-material and three-material CT models were used. The Liu and
Murakami damage model was used to predict the damage, and hence the CCG, in the models.
For the bi-material and three-materiad models, theinitia cracks were located on the boundary of
the two materials of different creep strengths. The results obtained showed that, the CCG and the
CCG ratesin the WM CT models are much higher than those in the PM CT models. This may be
attributed to the creep brittleness of the WM when compared to that of the PM. For the bi-
material models, sincetheinitial crack was located on the material interface, the CCG and CCG
rates are similar to those for the weaker material of the two materials. At the material interface,
high triaxiality exists and, therefore, enhances the CCG and CCG rates. Crack tip is subjected to
further triaxiality due plane strain conditions arose at the crack tip. This cumulative triaxiality at
the crack tip makes the materia behaving at avery brittle material. Thisis obviousin three-
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material models where the CCG and the CCG rates for the 3mat-PM/HAZ and for the 3mat-

WM/HAZ are higher than those for the 3mat-middle-HAZ models.

Damage distribution depends on materia properties. The results shown in Figure 4, Figure 9 and

Figure 12 for single materias, bi-material and three-material models, respectively, indicate that

the damage is uniformly distributed in both the PM and HAZ materials whileit islocalized in the

WM. Thislocalization of damage leads to the increase in the CCG and CCG rates and decrease

inthefailurelife of the WM CT moddl.
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*Nomenclature

Nomenclature;

A Material constant in Norton's creep law, Kachanov creep damage moddl,
and Liu and Murakami creep damage model

a Crack length
Material constant in Kachanov creep damage model or
full thickness of compact tension specimens

n Material constant in Norton's creep law, Kachanov creep damage modd,

and Liu and Murakami creep damage model

Oz Material constant in Liu and Murakami creep damage model

t Time

t; Failuretime

o Multiaxial parameter; material constant

&;j Creep strain tensor

Sij Deviatoric stress tensor

Ocq Equiva ent, von Mises, stress

o Stress

o1 Maximum principa stress

oy Rupture stress

X Materia constant in both Kachanov, and Liu and Murakami creep damage
models

0] Damage parameter, ranging from 0.0 (no damage) to 1.0 (full damage)

& Creep strain

€ Creep strain rate

¢ Material constant in Kachanov creep damage model



Highlights

e Liu and Murakami damage model was successfully used to predict creep crack
growth.

e Materia properties greatly affect the damage distribution.

o Creep crack growth is greatly affected by neighbouring materials.

e P91 weld showed significant brittleness when compared to P92 parent material.



