1,819 research outputs found

    Heat Transfer Analysis in a Flow Over Concave Wall With Primary and Secondary Instabilities

    Get PDF
    AbstractThe centrifugal instability mechanism in boundary layers over concave surfaces is responsible for the development of counter- rotating vortices, aligned in the streamwise direction, known as Görtler vortices. These vortices create two regions in the spanwise direction, the upwash and downwash regions. The downwash region is responsible for compressing the boundary layer towards the wall, increasing the drag coefficient and the heat transfer rate. The upwash region does the opposite. The Görtler vortices distort the streamwise velocity profile in the spanwise and the wall-normal directions. These distortions generate inflections in the distribution of streamwise velocity that are unstable to unsteady disturbances giving rise to secondary instabilities. In these flows the secondary instabilities can be of varicose or sinuous mode. The present paper analyses the heat transfer in a flow over a concave wall subjected to primary and secondary instabilities. The research is carried out by a Spatial Direct Numerical Simulation. The adopted parameters mimic the experimental parameters of Winoto and collaborators 17,18 and the Prandtl number adopted was Pr = 0.72. The results show that the varicose mode is the dominant secondary instability for the adopted parameters and that the spanwise average heat transfer rates can reach higher values than the turbulent ones. The higher heat transfer is caused by the mean flow distortion induced by the vortices, and this is present before high–frequency secondary instability sets in. Hence there is no direct connection to secondary instability. Possibly low–frequency modes undergo instability earlier

    Global Solutions for Incompressible Viscoelastic Fluids

    Full text link
    We prove the existence of both local and global smooth solutions to the Cauchy problem in the whole space and the periodic problem in the n-dimensional torus for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial data. The results hold in both two and three dimensional spaces. The results and methods presented in this paper are also valid for a wide range of elastic complex fluids, such as magnetohydrodynamics, liquid crystals and mixture problems.Comment: We prove the existence of global smooth solutions to the Cauchy problem for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial dat

    Controlling anomalous stresses in soft field-responsive systems

    Get PDF
    We report a new phenomenon occurring in field-responsive suspensions: shear-induced anomalous stresses. Competition between a rotating field and a shear flow originates a multiplicity of anomalous stress behaviors in suspensions of bounded dimers constituted by induced dipoles. The great variety of stress regimes includes non-monotonous behaviors, multi-resonances, negative viscosity effect and blockades. The reversibility of the transitions between the different regimes and the self-similarity of the stresses make this phenomenon controllable and therefore applicable to modify macroscopic properties of soft condensed matter phasesComment: 5 pages, 6 figures, submitted to PR

    Geometry of Frictionless and Frictional Sphere Packings

    Get PDF
    We study static packings of frictionless and frictional spheres in three dimensions, obtained via molecular dynamics simulations, in which we vary particle hardness, friction coefficient, and coefficient of restitution. Although frictionless packings of hard-spheres are always isostatic (with six contacts) regardless of construction history and restitution coefficient, frictional packings achieve a multitude of hyperstatic packings that depend on system parameters and construction history. Instead of immediately dropping to four, the coordination number reduces smoothly from z=6z=6 as the friction coefficient μ\mu between two particles is increased.Comment: 6 pages, 9 figures, submitted to Phys. Rev.

    Effect of Antimony and Cerium on the Formation of Chunky Graphite during Solidification of Heavy-Section Castings of Near-Eutectic Spheroidal Graphite Irons

    Get PDF
    Thermal analysis is applied to the study of the formation of chunky graphite (CHG) in heavysection castings of spheroidal graphite cast irons. To that aim, near-eutectic melts prepared in one single cast house were poured into molds containing up to four large cubic blocks 30 cm in size. Four melts have been prepared and cast that had a cerium content varying in relation with the spheroidizing alloy used. Postinoculation or addition of antimony was achieved by fixing appropriate amounts of materials in the gating system of each block. Cooling curves recorded in the center of the blocks show that solidification proceeds in three steps: a short primary deposition of graphite followed by an initial and then a bulk eutectic reaction. Formation of CHG could be unambiguously associated with increased recalescence during the bulk eutectic reaction. While antimony strongly decreases the amount of CHG, it appears that the ratio of the contents in antimony and cerium should be higher than 0.8 in order to avoid this graphite degeneracy

    Phase transitions in a ferrofluid at magnetic field induced microphase separation

    Full text link
    In the presence of a magnetic field applied perpendicular to a thin sample layer, a suspension of magnetic colloidal particles (ferrofluid) can form spatially modulated phases with a characteristic length determined by the competition between dipolar forces and short-range forces opposing density variations. We introduce models for thin-film ferrofluids in which magnetization and particle density are viewed as independent variables and in which the non-magnetic properties of the colloidal particles are described either by a lattice-gas entropy or by the Carnahan-Starling free energy. Our description is particularly well suited to the low-particle density regions studied in many experiments. Within mean-field theory, we find isotropic, hexagonal and stripe phases, separated in general by first-order phase boundaries.Comment: 12 pages, RevTex, to appear in PR

    Magnetization relaxation in (Ga,Mn)As ferromagnetic semiconductors

    Get PDF
    We describe a theory of Mn local-moment magnetization relaxation due to p-d kinetic-exchange coupling with the itinerant-spin subsystem in the ferromagnetic semiconductor (Ga,Mn)As alloy. The theoretical Gilbert damping coefficient implied by this mechanism is calculated as a function of Mn moment density, hole concentration, and quasiparticle lifetime. Comparison with experimental ferromagnetic resonance data suggests that in annealed strongly metallic samples, p-d coupling contributes significantly to the damping rate of the magnetization precession at low temperatures. By combining the theoretical Gilbert coefficient with the values of the magnetic anisotropy energy, we estimate that the typical critical current for spin-transfer magnetization switching in all-semiconductor trilayer devices can be as low as 105Acm2\sim 10^{5} {\rm A cm}^{-2}.Comment: 4 pages, 2 figures, submitted to Rapid Communication

    Collective dynamics of internal states in a Bose gas

    Get PDF
    Theory for the Rabi and internal Josephson effects in an interacting Bose gas in the cold collision regime is presented. By using microscopic transport equation for the density matrix the problem is mapped onto a problem of precession of two coupled classical spins. In the absence of an external excitation field our results agree with the theory for the density induced frequency shifts in atomic clocks. In the presence of the external field, the internal Josephson effect takes place in a condensed Bose gas as well as in a non-condensed gas. The crossover from Rabi oscillations to the Josephson oscillations as a function of interaction strength is studied in detail.Comment: 18 pages, 2 figure

    The Leptonic Higgs as a Messenger of Dark Matter

    Full text link
    We propose that the leptonic cosmic ray signals seen by PAMELA and ATIC result from the annihilation or decay of dark matter particles via states of a leptonic Higgs doublet to τ\tau leptons, linking cosmic ray signals of dark matter to LHC signals of the Higgs sector. The states of the leptonic Higgs doublet are lighter than about 200 GeV, yielding large τˉτ\bar{\tau} \tau and τˉττˉτ\bar{\tau} \tau \bar{\tau} \tau event rates at the LHC. Simple models are given for the dark matter particle and its interactions with the leptonic Higgs, for cosmic ray signals arising from both annihilations and decays in the galactic halo. For the case of annihilations, cosmic photon and neutrino signals are on the verge of discovery.Comment: 34 pages, 9 figures, minor typos corrected, references adde
    corecore