123,672 research outputs found
Robust stability of two-dimensional uncertain discrete systems
Copyright [2003] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this letter, We deal with the robust stability problem for linear two-dimensional (2-D) discrete time-invariant systems described by a 2-D local state-space (LSS) Fornasini-Marchesini (1989) second model. The class of systems under investigation involves parameter uncertainties that are assumed to be norm-bounded. We first focus on deriving the sufficient conditions under which the uncertain 2-D systems keep robustly asymptotically stable for all admissible parameter uncertainties. It is shown that the problem addressed can be recast to a convex optimization one characterized by linear matrix inequalities (LMIs), and therefore a numerically attractive LMI approach can be exploited to test the robust stability of the uncertain discrete-time 2-D systems. We further apply the obtained results to study the robust stability of perturbed 2-D digital filters with overflow nonlinearities
On designing H∞ filters with circular pole and error variance constraints
Copyright [2003] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we deal with the problem of designing a H∞ filter for discrete-time systems subject to error variance and circular pole constraints. Specifically, we aim to design a filter such that the H∞ norm of the filtering error-transfer function is not less than a given upper bound, while the poles of the filtering matrix are assigned within a prespecified circular region, and the steady-state error variance for each state is not more than the individual prespecified value. The filter design problem is formulated as an auxiliary matrix assignment problem. Both the existence condition and the explicit expression of the desired filters are then derived by using an algebraic matrix inequality approach. The proposed design algorithm is illustrated by a numerical example
Exponential stabilization of a class of stochastic system with Markovian jump parameters and mode-dependent mixed time-delays
Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the globally exponential stabilization problem is investigated for a general class of stochastic systems with both Markovian jumping parameters and mixed time-delays. The mixed mode-dependent time-delays consist of both discrete and distributed delays. We aim to design a memoryless state feedback controller such that the closed-loop system is stochastically exponentially stable in the mean square sense. First, by introducing a new Lyapunov-Krasovskii functional that accounts for the mode-dependent mixed delays, stochastic analysis is conducted in order to derive a criterion for the exponential stabilizability problem. Then, a variation of such a criterion is developed to facilitate the controller design by using the linear matrix inequality (LMI) approach. Finally, it is shown that the desired state feedback controller can be characterized explicitly in terms of the solution to a set of LMIs. Numerical simulation is carried out to demonstrate the effectiveness of the proposed methods.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National 973 Program of China under Grant 2009CB320600, and the Alexander von Humboldt Foundation of Germany. Recommended by Associate Editor G. Chesi
Guest editorial foreword to the special issue on intelligent computation for bioinformatics
Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it
Robust H∞ filtering for discrete nonlinear stochastic systems with time-varying delay
This is the postprint version of the article. The official published version can be accessed from the link below - © 2007 Elsevier IncIn this paper, we are concerned with the robust H∞ filtering problem for a class of nonlinear discrete time-delay stochastic systems. The system under study involves parameter uncertainties, stochastic disturbances, time-varying delays and sector-like nonlinearities. The problem addressed is the design of a full-order filter such that, for all admissible uncertainties, nonlinearities and time delays, the dynamics of the filtering error is constrained to be robustly asymptotically stable in the mean square, and a prescribed H∞ disturbance rejection attenuation level is also guaranteed. By using the Lyapunov stability theory and some new techniques, sufficient conditions are first established to ensure the existence of the desired filtering parameters. These conditions are dependent on the lower and upper bounds of the time-varying delays. Then, the explicit expression of the desired filter gains is described in terms of the solution to a linear matrix inequality (LMI). Finally, a numerical example is exploited to show the usefulness of the results derived.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, the Alexander von Humboldt Foundation of Germany, the National Natural Science Foundation of China (60774073 and 10471119), the NSF of Jiangsu Province of China (BK2007075 and BK2006064), the Natural Science Foundation of Jiangsu Education Committee of China under Grant 06KJD110206, and the Scientific Innovation Fund of Yangzhou University of China under Grant 2006CXJ002
Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays
This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2013 IEEE.In this paper, the synchronization problem is studied for an array of N identical delayed neutral-type neural networks with Markovian jumping parameters. The coupled networks involve both the mode-dependent discrete-time delays and the mode-dependent unbounded distributed time delays. All the network parameters including the coupling matrix are also dependent on the Markovian jumping mode. By introducing novel Lyapunov-Krasovskii functionals and using some analytical techniques, sufficient conditions are derived to guarantee that the coupled networks are asymptotically synchronized in mean square. The derived sufficient conditions are closely related with the discrete-time delays, the distributed time delays, the mode transition probability, and the coupling structure of the networks. The obtained criteria are given in terms of matrix inequalities that can be efficiently solved by employing the semidefinite program method. Numerical simulations are presented to further demonstrate the effectiveness of the proposed approach.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61074129, 61174136 and 61134009, and the Natural Science Foundation of Jiangsu Province of China under Grants BK2010313 and BK2011598
Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays
Copyright [2006] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this letter, the global asymptotic stability analysis problem is considered for a class of stochastic Cohen-Grossberg neural networks with mixed time delays, which consist of both the discrete and distributed time delays. Based on an Lyapunov-Krasovskii functional and the stochastic stability analysis theory, a linear matrix inequality (LMI) approach is developed to derive several sufficient conditions guaranteeing the global asymptotic convergence of the equilibrium point in the mean square. It is shown that the addressed stochastic Cohen-Grossberg neural networks with mixed delays are globally asymptotically stable in the mean square if two LMIs are feasible, where the feasibility of LMIs can be readily checked by the Matlab LMI toolbox. It is also pointed out that the main results comprise some existing results as special cases. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria
- …