
814 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 3, MAY 2006

provide a “linearized” underdetermined BSS problem, which can easily
be solved.

The presented method requires sparse sources and invertible nonlin-
earities that are linear for small input values. Simulation results were
included for 2-measurement and 3-measurement cases, and as long as
the contributions of the different sources do not overlap in the mixtures,
there is no restriction on the number of sources or mixtures.

REFERENCES

[1] J. Cardoso, “Blind signal separation: statistical principles,” in Proc.
IEEE. Special Issue on Blind Identification and Estimation, vol. 9, Oct.
1998, pp. 2009–2025.

[2] P. Comon, C. Jutten, and J. Herault, “Blind separation of sources, part
II: problem statement,” Signal Process., vol. 24, pp. 11–21, 1991.

[3] P. Comon, “Independent component analysis—a new concept?,” Signal
Process., vol. 36, pp. 287–314, 1994.

[4] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Anal-
ysis. New York: Wiley Interscience, 2001.

[5] M. Joho, H. Mathis, and R. Lambert, “Overdetermined blind source
separation: using more sensors than source signals in a noisy mixture,”
in Proc. 2nd Int. Conf. on Independent Component Analysis and Blind
Signal Separation, Helsinki, Finland, Jun. 2000, pp. 81–86.

[6] T. W. Lee, M. S. Lewicki, M. Girolami, and T. J. Sejnowski, “Blind
source separation of more sources than mixtures using overcomplete
representations,” IEEE Signal Process. Lett., vol. 6, pp. 87–90, 1999.

[7] P. Bofill and M. Zibulevsky, “Underdetermined blind source separa-
tion using sparse representations,” Signal Process., vol. 81, no. 11, pp.
2353–2362, 2001.

[8] D. Luengo, I. Santamaría, and L. Vielva, “A general solution to blind
inverse problems for sparse input signals: deconvolution, equalization
and source separation,” Neurocomputing , vol. 69, pp. 198–215, 2005.

[9] M. Solazzi, R. Parisi, and A. Uncini, “Blind source separation in non-
linear mixtures by adaptive spline neural networks,” in Proc. 3rd Int.
Conf. on Independent Component Analysis and Blind Signal Separation,
San Diego, CA, Dec. 2001, pp. 254–259.

[10] Y. Tan and J. Wang, “Nonlinear blind source separation using higher
order statistics and a genetic algorithm,” IEEE Trans. Evol. Comput.,
vol. 5, no. 6, pp. 600–612, Dec. 2001.

[11] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “A geometric approach
for separating post nonlinear mixtures,” in Proc. XI Europ. Signal Pro-
cessing Conf., vol. II, Toulouse, France, Sep. 2002, pp. 11–14.

[12] A. Taleb and C. Jutten, “Source separation in post-nonlinear mixtures,”
IEEE Trans. Signal Process., vol. 47, no. 10, pp. 2807–2820, Oct. 1999.

[13] F. J. Theis and S. Amari, “Postnonlinear overcomplete blind source sep-
aration using sparse sources,” in Proc. 5th Int. Conf. Independent Com-
ponent Analysis and Blind Signal Separation, vol. 3195, Lecture Notes
in Computer Science, Granada, Spain, Sep. 2004, pp. 718–725.

[14] L. Vielva, I. Santamaría, C. Pantaleón, J. Ibáñez, D. Erdogmus, and J.
C. Príncipe, “Estimation of the mixing matrix for underdetermined blind
source separation using spectral techniques,” in Proc. XI Europ. Signal
Processing Conf., vol. 1, Toulouse, France, Sep. 2002, pp. 557–560.

[15] D. Erdogmus, L. Vielva, and J. C. Príncipe, “Nonparametric estimation
and tracking of the mixing matrix for underdetermined blind source sep-
aration,” in Proc. 3rd Int. Conf. on Independent Component Analysis and
Blind Signal Separation, San Diego, CA, Dec. 2001, pp. 189–194.

[16] F. J. Theis, E. W. Lang, and C. G. Puntonet, “A geometric algorithm for
overcomplete linear ICA,”Neurocomputing, vol. 56, pp. 381–396, 2004.

[17] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
analysis and an algorithm,” in Advances in Neural Information Pro-
cessing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani,
Eds. Cambridge, MA: MIT Press, 2002, pp. 849–856.

[18] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” in Ad-
vances in Neural Information Processing Systems 17, L. K. Saul, Y.
Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005, pp.
1601–1608.

Stability Analysis for Stochastic Cohen–Grossberg Neural
Networks With Mixed Time Delays

Zidong Wang, Yurong Liu, Maozhen Li, and Xiaohui Liu

Abstract—In this letter, the global asymptotic stability analysis problem
is considered for a class of stochastic Cohen–Grossberg neural networks
with mixed time delays, which consist of both the discrete and distributed
time delays. Based on an Lyapunov–Krasovskii functional and the sto-
chastic stability analysis theory, a linear matrix inequality (LMI) approach
is developed to derive several sufficient conditions guaranteeing the global
asymptotic convergence of the equilibrium point in the mean square. It is
shown that the addressed stochastic Cohen–Grossberg neural networks
with mixed delays are globally asymptotically stable in the mean square if
two LMIs are feasible, where the feasibility of LMIs can be readily checked
by the Matlab LMI toolbox. It is also pointed out that the main results
comprise some existing results as special cases. A numerical example
is given to demonstrate the usefulness of the proposed global stability
criteria.

Index Terms—Cohen–Grossberg neural networks, discrete delays, dis-
tributed delays, global asymptotic stability, linearmatrix inequality (LMI),
Lyapunov–Krasovskii functional, stochastic systems.

I. INTRODUCTION

The past few decades have witnessed tremendous developments in
the research field of neural networks. Various neural networks, such
as Hopfield neural networks, cellular neural networks, bidirectional
associative neural networks and Cohen–Grossberg neural networks,
have been widely investigated and successfully applied in many areas.
Among them, the renowned Cohen–Grossberg neural network [7] has
recently gained particular research attention, since it is quite general
to include several well-known neural networks as its special cases, and
it has promising application potentials for tasks of classification, asso-
ciative memory, parallel computation and nonlinear optimization prob-
lems; see [16] and [26] for a survey.
On the other hand, time delays are unavoidably encountered in

the implementation of neural networks, and may cause undesirable
dynamic network behaviors such as oscillation and instability. For
example, delay occurs due to the finite speeds of the switching and
transmission of signals in a network. This leads to the delayed neural
networks that were first explicitly introduced in [17]. Since then, the
delayed neural networks have been widely studied. Recently, there has
been an increasing research interest on the stability analysis problems
for delayed Cohen–Grossberg neural networks, and many results
have been reported in the literature. Various sufficient conditions,
either delay-dependent or delay-independent, have been proposed
to guarantee the asymptotic, exponential, or absolute stability for
Cohen–Grossberg neural networks; see [2], [5], [6], [13], [14], and
[18] for some recent results concerning discrete time-delays.
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Although it has been recognized that discrete time-delays can be in-
troduced into communication channels since they are ubiquitous in both
the neural processing and signal transmission, a neural network also has
a special nature due to the presence of an amount of parallel pathways
with a variety of axon sizes and lengths. Such an inherent nature can be
suitably modeled by distributed delays [21], because the signal propa-
gation is distributed during a certain time period. For example, in [21],
a neural circuit has been designed with distributed delays, which solves
a general problem of recognizing patterns in a time-dependent signal.
As a matter of fact, a realistic neural network should involve both dis-
crete and distributed delays [19]. Recently, the stability analysis prob-
lems for Cohen–Grossberg neural networks with distributed time-de-
lays have begun to receive some attention from some researchers; see,
e.g., [20] and [23]. It should bementioned that, most recently, the global
asymptotic stability analysis problem has been investigated in [24], [25]
for a general class of neural networks with both discrete and distributed
time-delays, where a linear matrix inequality (LMI) approach has been
developed to establish the sufficient stability conditions.

In the past few years, the dynamical behaviors of stochastic neural
networks have emerged as a new subject of research mainly for two
reasons: i) in real nervous systems, the synaptic transmission is a noisy
process brought on by random fluctuations from the release of neu-
rotransmitters and other probabilistic causes; and ii) it has been real-
ized that a neural network could be stabilized or destabilized by certain
stochastic inputs [3]. In particular, the stability criteria for stochastic
neural networks becomes an attractive research problem of prime im-
portance. Some initial results have just appeared, for example, in [12]
and [22], for stochastic delayed Hopfield neural networks. However, to
the best of the authors’ knowledge, the global stability analysis problem
for stochastic Cohen–Grossberg neural networks with simultaneous
presence of discrete and distributed delays has not been studied yet,
and still remains as a challenging open problem.

In this letter, we deal with the global asymptotic stability anal-
ysis problem for a class of stochastic Cohen–Grossberg neural
networks with discrete and distributed time-delays. By utilizing a Lya-
punov–Krasovskii functional and conducting the stochastic analysis,
we recast the addressed stability analysis problem into a numerically
solvability problem. Different from the commonly used matrix norm
theories (such as the M -matrix method), a unified LMI approach is
developed to establish sufficient conditions for the neural networks to
be globally asymptotically stable. Note that LMIs can be easily solved
by using the Matlab LMI toolbox, and no tuning of parameters is
required [4]. A numerical example is provided to show the usefulness
of the proposed global stability condition.
Notations: The notations are quite standard. Throughout this letter,
n and n�m denote, respectively, then-dimensional Euclidean space

and the set of all n � m real matrices. The superscript “T ” denotes
matrix transposition and the notation X � Y (respectively, X >

Y ) where X and Y are symmetric matrices, means that X � Y is
positive semidefinite (respectively, positive definite). In is the n � n

identity matrix. j � j is the Euclidean norm in n. If A is a matrix,
denote by kAk its operator norm, i.e., kAk = supfjAxj : jxj =
1g = �max(ATA)where �max(�) (respectively, �min(�)) means the
largest (respectively, smallest) eigenvalue ofA. l2[0;1) is the space of
square integrable vector. Moreover, let (
, F , fFtgt�0, P ) be a com-
plete probability space with a filtration fFtgt�0 satisfying the usual
conditions (i.e., the filtration contains all P -null sets and is right con-
tinuous). Denote by L

p

F0([�h; 0];
n) the family of all F0-measur-

able C([�h; 0]; n)-valued random variables � = f�(�) : �h �
� � 0g such that sup�h���0 j�(�)jp < 1 where f�g stands
for the mathematical expectation operator with respect to the given
probability measure P . The shorthand diagfM1;M2; � � � ;MNg de-
notes a block diagonal matrix with diagonal blocks being the matrices

M1;M2; � � � ;MN . Sometimes, the arguments of a function or a matrix
will be omitted in the analysis when no confusion can arise.

II. PROBLEM FORMULATION

In this letter, the Cohen–Grossberg neural networks with discrete
and distributed time delays can be described by the following delay
differential equations:

dui(t)

dt
= �ai (ui(t)) bi (ui(t))�

n

j=1

aijg1j (uj(t))

�

n

j=1

bijg2j (uj(t� h))�

n

j=1

cij

t

t��

g3j (uj(s))ds+ Vi

(1)

where ui(t) is the state of the ith unit at time t, ai(ui(t)) is the
amplification function, bi(ui(t)) denotes the behaved function, and
gki(ui(t)) (k = 1; 2; 3) are the activation functions. The matrices
A = (aij)n�n, B = (bij)n�n and C = (cij)n�n are, respectively,
the connection weight matrix, the discretely delayed connection
weight matrix, and the distributively delayed connection weight
matrix. V = [V1; V2; � � � ; Vn]

T is a constant external input vector.
The scalar h > 0, which may be unknown, denotes the discrete time
delay, whereas the scalar � > 0 is the known distributed time-delay.
Let u(t) = (u1(t); u2(t); � � � ; un(t))

T ; a(u) = diag
(a1(u1); a2(u2); � � � ; an(un)); b(u) = (b1(u1); b2(u2); � � � ;
bn(un))

T ; gi(u(�)) = (gi1(u1(�)); gi2(u2(�)); � � � ; gin(un(�)))
T

(i = 1, 2, 3). The model (1) can be rewritten as the following compact
matrix form:

du(t)

dt
= �a (u(t)) b (u(t))� Ag1 (u(t))�Bg2 (u(t� h))

�C

t

t��

g3 (u(s))ds+ V : (2)

In this letter, we make the following assumptions on the amplifica-
tion function, the behaved function, and the neuron activation func-
tions.
Assumption 1: For each i 2 f1; 2; � � � ; ng, the amplification func-

tion ai(�) is positive, bounded, and satisfies

0 < �i � ai(�) � ��i (3)

where �i and ��i are known positive constants.
Assumption 2: The behaved function bi(x) : ! is continuous

and differentiable, and

b
0
i(x) � i > 0 8x 2 ; i = 1; 2; � � � ; n: (4)

Assumption 3: The neuron activation functions gi(�) are bounded
and satisfy the following Lipschitz conditions:

jgi(x)� gi(y)j � jGi(x� y)j 8x; y 2 n (5)

where Gi 2
n�n (i = 1, 2, 3) are known constant matrices.
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In the literature, the activation function is typically assumed to be
continuous, differentiable, and monotonically increasing, such as the
function of sigmoid type. These restrictions are no longer needed in
this letter, and only Lipschitz condition and boundedness condition are
imposed in Assumption 3. Note that the type of activation functions in
(5) have already been used in numerous papers.

In Assumption 3, it is assumed that the activation functions are
bounded, and it is well known that bounded activation functions
always guarantee the existence of an equilibrium point for neural net-
works (2). For notational convenience, we shift the equilibrium point
u� = (u�1; � � � ; u

�

n)
T to the origin by translation x(t) = u(t) � u�,

which yields the following system:

dx(t)

dt
= �� (x(t)) � (x(t))� Al1 (x(t))

�Bl2 (x(t� h))� C

t

t��

l3 (u(s))ds (6)

where x(t) = [x1(t); x2(t); � � � ; xn(t)]
T 2 n is the state vector of

the transformed system and

� (x(t)) =diag (�1 (x1(t)) ; �2 (x2(t)) ; � � � ; �n (xn(t)))

�i (xi(t)) = ai (xi(t) + u
�
i )

� (x(t)) = (�1 (x1(t)) ; �2 (x2(t)) ; � � � ; �n (xn(t)))

�i (xi(t)) = bi (xi(t) + u
�
i )� bi (u

�
i )

li (x(�)) = (li1 (x1(�)) ; li2 (x2(�)) ; � � � ; lin (xn(�)))

lij (xj(�)) = gij xj(�) + u
�
j � gij u

�
j :

It follows, respectively, from Assumption 1, Assumption 2, and As-
sumption 3 that

0 < �i � �i(�) � ��i; (i = 1; 2; � � � ; n) (7)

xi(t)�i (xi(t)) � ix
2
i (t); (i = 1; 2; � � � ; n) (8)

jli(x)j � jGixj; (i = 1; 2; 3): (9)

As discussed in Section I, in the real world, the neural network is
often disturbed by environmental noises that affect the stability of the
equilibrium. In this letter, as in [3], [12], and[22], Cohen–Grossberg
neural network with stochastic perturbations is introduced as follows:

dx(t) = �� (x(t))

� � (x(t))� Al1 (x(t))�Bl2 (x(t� h))

� C

t

t��

l3 (u(s))ds dt

+ � (t; x(t); x(t� h))dw(t) (10)

where w(t) = [w1(t); w2(t); � � � ; wn(t)]
T 2 n is a Brownian mo-

tion defined on (
, F , fFtgt�0, P ).
Assume that � : + � n � n ! n�n (�(t;0; 0) = 0) is

locally Lipschitz continuous and satisfies the linear growth condition
([11]). Moreover, � satisfies

trace �
T (t; x(t); x(t� h))� (t; x(t); x(t� h))

� j�1x(t)j
2 + j�2x(t� h)j2 (11)

where �1 and �2 are known constant matrices with appropriate
dimensions. Let x(t; �) denote the state trajectory of the neural
network (10) from the initial data x(�) = �(�) on �h � � � 0 in
L2
F0([�h; 0];

n). It can be easily seen that the system (10) admits a
trivial solution x(t; 0) � 0 corresponding to the initial data � = 0,
see [11].
Remark 1: The assumption (11) on the stochastic disturbance term,

�(t; x(t); x(t � h)), has been used in recent papers dealing with sto-
chastic neural networks, see [12] and references therein.
Definition 1: For the neural network (10) and every � 2

L2
F0([�h; 0];

n), the trivial solution (equilibrium point) is globally
asymptotically stable in the mean square if the following holds:

lim
t!1

jx(t; �)j2 = 0: (12)

The main purpose of the rest of this letter is to establish LMI-based
stability criteria, which can then be readily checked by using theMatlab
LMI toolbox, such that the global asymptotic stability is guaranteed for
the neural network (10) with both discrete and distributed time delays.

III. MAIN RESULTS AND PROOFS

The following lemmas will be frequently used in establishing our
LMI-based stability criteria.
Lemma 1: Let x 2 n, y 2 n and " > 0. Then we have xT y +

yT x � "xTx + "�1yT y.
Lemma 2: [10] For any positive definite matrixM > 0, scalar  >

0, vector function! : [0; ] ! n such that the integrations concerned
are well defined, the following inequality holds:



0

!(s)ds

T

M



0

!(s)ds � 



0

!
T (s)M!(s)ds :

Before stating our main results, let us denote

� := min
1�i�n

�i �� := max
1�i�n

��i

� := diagf1; � � � ; ng P := diagfp1; � � � ; png (13)


1 := � �P�� ��P + � �T
1 �1 + �T

2 �2 (14)

where �i and ��i are defined in (3), i is defined in (4), �1 and �2 are
defined in (11), the diagonal positive definite matrix P and the positive
scalar � > 0 are two parameters to be designed.
We are now ready to derive the conditions under which the network

dynamics of (10) is globally asymptotically stable in the mean square.
The main theorem given below shows that the stability criteria can be
expressed in terms of the feasibility of two LMIs.
Theorem 1: If there exist positive scalars � > 0, "i > 0 (i = 1,

2, 3) and a diagonal positive definite matrix P > 0 such that the two
LMIs

P < �I (15)

and (16), shown at the bottom of the next page, hold where 
1 is de-
fined in (14), then the dynamics of the neural network (10) is globally
asymptotically stable in the mean square.

Proof: Pre- and postmultiplying (16) by the block-diagonal ma-
trix

diag I; "
�

1 I; "
�

1 I; "
�

2 I; "
�

2 I; "
�

3 I; "
�

3 I

yield (17), as shown at the bottom of the next page, or


1 
T
3


3 �
2

< 0 (18)
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where


1 := � �P�� ��P + � �T
1 �1 +�T

2 �2


2 := I


3 := "
�

1 �max(AA
T )��P "1 G

T
1 "

�

2 �max(BB
T )��P

"2 G
T
2 "

�

3 �max(CC
T )��P "3 �G

T
3

T

:

It follows from the Schur Complement Lemma (see [4]) that (18)
holds if and only if


1 +
T
3 


�1

2 
3 < 0

or

� �P�� ��P+� �T
1 �1+�T

2 �2

+ "
�1

1 �max(AA
T )+"

�1

2 �max(BB
T )+"

�1

3 �max(CC
T )

� ��2P 2+"1G
T
1 G1+"2G

T
2 G2+"3�

2
G

T
3 G3<0: (19)

Therefore, we know from the condition of Theorem 1 that, there exist
positive scalars � > 0, "i > 0 (i =1, 2, 3) and a diagonal positive
definite matrix P > 0 such that (19) is true. Also, we know from (9)
that

l
T
i (x)li(x) � jGixj

2 = x
T
G

T
i Gix: (20)

In order to prove the global asymptotic stability in the mean square
of the network (10), we define a Lyapunov–Krasovskii functional can-
didate V (t; x(t)) 2 C2;1( + � n; +) by

V (t; x(t)) = x
T (t)Px(t) +

t

t�h

x
T (s)Q1x(s)ds

+

0

��

t

t+s

x
T (�)Q2x(�)d�ds (21)

where P is the diagonal positive definite solution to (19), and Q1 � 0
and Q2 � 0 are defined by

Q1 := "2G
T
2 G2 + ��T

2 �2; Q2 := "3�G
T
3 G3: (22)

By Itô’s differential formula (see, e.g., [8]), the stochastic derivative
of V (t; x(t)) along (10) can be obtained as follows:

dV (t; x(t))

= �2xT (t)P� (x(t))

� � (x(t))�Al1 (x(t))�Bl2 (x(t� h))

� C

t

t��

l3 (u(s))ds

+ trace �
T (t; x(t); x(t� h))P� (t; x(t); x(t� h))

+ x
T (t)Q1x(t)� x

T (t� h)Q1x(t� h)

+ �x
T (t)Q2x(t)�

t

t��

x
T (s)Q2x(s)ds dt

+ 2xT (t)P� (t; x(t); x(t� h))dw(t): (23)

Noticing that P and �(x(t)) are diagonal positive–definite matrices,
we obtain from (7) and (8) that

� 2xT (t)P� (x(t))� (x(t))

= �2

n

i=1

xi(t)pi�i (xi(t))�i (xi(t))

= �2

n

i=1

pi�i (xi(t)) [xi(t)�i (xi(t))]

� �2

n

i=1

pi�i (xi(t))ix
2

i (t) � �2

n

i=1

pi�iix
2

i (t)

� �2�

n

i=1

piix
2

i (t) = �2�xT (t)P�x(t): (24)

Next, it follows from the conditions (11) and (15) that

trace �
T (t; x(t); x(t�h))P� (t; x(t); x(t�h)) (25)

��max(P )trace �
T (t; x(t); x(t�h))� (t; x(t); x(t�h))

�� x
T (t)�T

1 �1x(t)+x
T (t�h)�T

2 �2x(t�h) : (26)


1 �max(AA
T )��P "1G

T
1 �max(BB

T )��P "2G
T
2 �max(CC

T )��P "3�G
T
3

�max(AA
T )��P �"1I 0 0 0 0 0

"1G1 0 �"1I 0 0 0 0

�max(BB
T )��P 0 0 �"2I 0 0 0

"2G2 0 0 0 �"2I 0 0

�max(CC
T )��P 0 0 0 0 �"3I 0

"3�G3 0 0 0 0 0 �"3I

< 0 (16)


1 "
�

1 �max(AA
T )��P "1 G

T
1 "

�

2 �max(BB
T )��P "2 G

T
2 "

�

3 �max(CC
T )��P "3 �G

T
3

"
�

1 �max(AA
T )��P �I 0 0 0 0 0

"1 G1 0 �I 0 0 0 0

"
�

2 �max(BB
T )��P 0 0 �I 0 0 0

"2 G2 0 0 0 �I 0 0

"
�

3 �max(CC
T )��P 0 0 0 0 �I 0

"3 �G3 0 0 0 0 0 �I

<0 (17)
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For the positive scalars "1 > 0, "2 > 0, "3 > 0, it follows from
Lemma 1 and (20) that

2xT (t)P� (x(t))Al1 (x(t))

� "
�1

1 x
T (t)P� (x(t))AAT

� (x(t))Px(t)

+ "1l
T

1 (x(t)) l1 (x(t))

� "
�1

1 �max(AA
T )��2xT (t)P 2

x(t)

+ "1x
T (t)GT

1 G1x(t) (27)

2xT (t)P� (x(t))Bl2 (x(t� h))

� "
�1

2 x
T (t)P� (x(t))BBT

� (x(t))Px(t)

+ "2l
T

2 (x(t� h)) l2 (x(t� h))

� "
�1

2 �max(BB
T )��2xT (t)P 2

x(t)

+ "2x
T (t� h)GT

2 G2x(t� h): (28)

Furthermore, it can be seen from (22) and Lemma 2 that

"3

t

t��

l2 (x(s))ds

T
t

t��

l2 (x(s))ds

� "3�

t

t��

l
T

2 (x(s)) l2 (x(s))ds

� "3�

t

t��

x
T (s)GT

3G3x(s)ds

=

t

t��

x
T (s)Q2x(s)ds (29)

and, hence

2xT (t)P� (x(t))C

t

t��

l3 (u(s))ds

� "
�1

3 x
T (t)P� (x(t))CCT

� (x(t))Px(t)

+ "3

t

t��

l3 (u(s))ds

T
t

t��

l3 (u(s))ds

� "
�1

3 �max(CC
T )��2xT (t)P 2

x(t)

+

t

t��

x
T (s)Q2x(s)ds: (30)

Using (22) and (24)–(30), we obtain from (23) that

dV (t; x(t))

� x
T (t) ��P�� ��P + � �T

1 �1 +�T

2 �2

+ "
�1

1 �max(AA
T ) + "

�1

2 �max(BB
T )

+"�13 �max(CC
T ) ��2P 2

+"1G
T

1 G1 + "2G
T

2 G2 + "3�
2
G

T

3 G3 x(t) dt

+ 2xT (t)P� (t; x(t); x(t� h))dw(t)

= x
T (t)�x(t)dt+ 2xT (t)P�

� (t; x(t); x(t� h))dw(t): (31)

where � is defined as

� := � �P�� ��P + � �T

1 �1 + �T

2 �2

+ "
�1

1 �max(AA
T ) + "

�1

2 �max(BB
T )

+"�13 �max(CC
T ) ��2P 2

+ "1G
T

1 G1 + "2G
T

2 G2 + "3�
2
G

T

3 G3: (32)

From (19), we know that � < 0. Taking the mathematical expecta-
tion of both sides of (31), we have

d V (t; x(t))

dt
� x

T (t)�x(t) � ��min(��) jx(t)j2 : (33)

It can now be concluded from Lyapunov stability theory that the dy-
namics of the neural network (10) is robustly, globally, asymptotically
stable in the mean square. This completes the proof of Theorem 1.
Remark 2: By employing the Matlab LMI toolbox, it would be very

convenient to verify the feasibility of (15) and (16) without tuning any
parameters, and determine the global asymptotic stability of the neural
network (10) directly. Compared with the existing results relying on
matrix norm computation, such as those given in [3] and [6], the LMI
approach developed in this letter is numerically more efficient [4] and
less conservative. It is worth pointing out that, following the similar line
of [15], it is not difficult to prove the exponential stability (in the mean
square) of the neural network (10) under same conditions in Theorem
1.
In what follows, we will show that our results can be specialized to

several cases including those have been studied extensively in the lit-
erature. All the corollaries given below are easy consequences of The-
orem 1, hence the proofs are omitted.
We first consider the following Cohen–Grossberg neural network

without stochastic perturbations:

dx(t)

dt
= �� (x(t)) � (x(t))�Al1 (x(t))�Bl2 (x(t� h))

�C

t

t��

l3 (u(s))ds : (34)

Corollary 1: If there exist positive scalars "i > 0 (i = 1, 2, 3) and
a diagonal positive definite matrix P > 0 such that the following LMI,
as shown in (35) at the top of the next page, holds, then the dynamics
of the neural network (34) is globally asymptotically stable.
Remark 3: Although there have been some papers published on the

stability analysis problems for Cohen–Grossberg neural networks with
discrete or distributed time-delays [2], [18], [20], [23] to the best of the
authors’ knowledge, there are few results concerning the simultaneous
presence of discrete or distributed time-delays. Hence, the results in
Corollary are still new.
If we are only interested in discrete-time delays, the Cohen–Gross-

berg neural network (34) can be further reduced to

dx(t)

dt
= �� (x(t)) [� (x(t))�Al1 (x(t))�Bl2 (x(t� h))] :

(36)
Corollary 2: If there exist positive scalars "i > 0 (i = 1, 2) and a

diagonal positive definite matrix P > 0 such that the following LMI,
as shown in (37) at the top of the next page, holds, then the dynamics
of the neural network (36) is globally asymptotically stable.
Remark 4: The Cohen–Grossberg neural networks (36) with dis-

crete time-delays have been well investigated in the literature, see, e.g.,
[2] and [18]. The result in Corollary provides alternative criteria based
on an LMI approach, which is numerically traceable.
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��P�� ��P �max(AA
T )��P "1G

T

1 �max(BB
T )��P "2G

T

2 �max(CC
T )��P "3�G

T

3

�max(AA
T )��P �"1I 0 0 0 0 0

"1G1 0 �"1I 0 0 0 0

�max(BB
T )��P 0 0 �"2I 0 0 0

"2G2 0 0 0 �"2I 0 0

�max(CC
T )��P 0 0 0 0 �"3I 0

"3�G3 0 0 0 0 0 �"3I

< 0 (35)

��P�� ��P �max(AA
T )��P "1G

T

1 �max(BB
T )��P "2G

T

2

�max(AA
T )��P �"1I 0 0 0

"1G1 0 �"1I 0 0

�max(BB
T )��P 0 0 �"2I 0

"2G2 0 0 0 �"2I

< 0 (37)

��P�� ��P �max(AA
T )��P "1G

T

1 �max(CC
T )��P "3�G

T

3

�max(AA
T )��P �"1I 0 0 0

"1G1 0 �"1I 0 0

�max(CC
T )��P 0 0 �"3I 0

"3�G3 0 0 0 �"3I

< 0 (39)

If there appears only distributed time-delay in the Cohen–Grossberg
neural network (34), as in [20] and [23] themodel can now be simplified
to

dx(t)

dt
=��(x(t)) � (x(t))�Al1(x(t))�C

t

t��

l3(u(s))ds :

(38)
Corollary 3: If there exist positive scalars "i > 0 (i = 1, 3) and a

diagonal positive definite matrix P > 0 such that the following LMI,
as shown in (39) at the top of the page, holds, then the dynamics of the
neural network (38) is globally asymptotically stable.
Remark 5: In [20] and [23], the stability criteria of the

Cohen–Grossberg neural networks (38) with distributed time-de-
lays have been established in terms of some nonlinear inequalities,
which involve the tuning of some scalar parameters. However, there
lacks a systematic tuning law. Also, in [20] and [23], in order to verify
the stability of the neural network, we have to compute the norms of
the parameters A and C separately, while in Corollary 3, we just need
to check the feasibility of one integrated LMI, which can be done
more conveniently by the Matlab LMI toolbox.

IV. NUMERICAL EXAMPLE

Let us consider a third-order delayed stochastic Cohen–Grossberg
neural network (10) with both discrete and distributed delays. The net-
work data are given as follows:

� =

3 0 0

0 3 0

0 0 2

A =

0:3 �1:8 0:5

�1:1 1:6 1:1

0:6 0:4 �0:3

B =

0:8 0:2 0:1

0:2 0:6 0:6

�0:8 1:1 �1:2

C =

0:5 0:2 0:1

0:3 0:7 �0:3

1:2 �1:1 �0:5

G1 =G2 = G3 = 0:2I3 �1 = �2 = 0:08I3

� =0:7; �� = 0:8; � = 0:5; h = 0:12:

By solving the LMIs (15), (16) for � > 0, "i > 0 (i = 1, 2, 3), and
P > 0, we obtain

� =1:7128 "1 = 1:5038 "2 = 1:5038

"3 =1:5422 P = diagf0:2289; 0:2289;0:2291g

which implies from Theorem 1 that the delayed stochastic
Cohen–Grossberg neural network (10) is globally asymptotically
stable in the mean square.

V. CONCLUSION

In this letter, we have dealt with the problem of global asymptotic
stability analysis for a class of stochastic Cohen–Grossberg neural net-
works, which involve both discrete and distributed time delays. We
have removed the traditional monotonicity and smoothness assump-
tions on the activation function. A LMI approach has been developed
to solve the problem addressed. The stability criteria have been derived
in terms of the positive definite solution to two LMIs involving sev-
eral scalar parameters, which can be easily solved by using the Matlab
toolbox. A simple example has been used to demonstrate the useful-
ness of the main results.
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A Tighter Bound for the Echo State Property

Michael Buehner and Peter Young

Abstract—This letter provides a brief explanation of echo state networks
(ESNs) and provides a rigorous bound for guaranteeing asymptotic sta-
bility of these networks. The stability bounds presented here could aid in
the design of echo state networks that would be applicable to control appli-
cations where stability is required.

Index Terms—Echo state networks (ESNs), Lyapunov stability, non-
linear systems, recurrent neural networks (RNN), robust controls,
weighted operator norms.

I. INTRODUCTION

Artificial neural networksmay be used in control system applications
such as modeling nonlinear system dynamics and control of nonlinear
systems. Two types of networks are used for these applications, namely
feed-forward neural networks (FFNN) and recurrent neural networks
(RNN). FFNN are attractive since they are easy to train in a stable
manner (e.g., using back propagation), but are limited in the sense that
they are only capable of providing a static map between inputs and
outputs (i.e., they have no way of internally representing the dynamics
of a nonlinear system). In contrast, RNN may be very difficult (and
take a long time) to train stably; however, the recurrent connections of
a RNN form a dynamical system. It is this dynamical nature of RNN
that allows them to capture the dynamics of a nonlinear system, which
makes themmore applicable to nonlinear systemmodeling and control.
Examples of RNN are Hopfield networks, Elman networks, liquid state
machines, and echo state networks (ESNs), the last-mentioned being
the focus of this letter. For a review of these RNN and the problems
associated with training them, see either [1], [2], or [3].
The recent development of echo state networks [4] ESNs provides

a class of RNN that alleviates the problem of training, but the design
methodology of ESNs is still not fully understood. ESNs are charac-
terized by their ability to uniquely map a temporal input history to an
“echo state.” An ESN that has this characteristic is said to have the echo
state property. Currently, the echo state property may be verified from
two sufficient conditions, namely one for the existence of echo states
for all inputs and one for the nonexistence of echo states for certain in-
puts. This letter reformulates and further develops these conditions into
separate necessary and sufficient condition for the existence of echo
states for all inputs. Asmentioned in [4], the current sufficient condition
for the existence of echo states appears, in practice, to be rather restric-
tive. This problem is addressed by deriving a new sufficient condition
that is less conservative. Specifically, a result that is well known in the
Robust Controls community is used to reduce the conservatism and in
some cases make the bounds tight (i.e., provide a single bound that is
both necessary and sufficient). This letter concludes with some simple
simulations to demonstrate the improvement that can be achieved by
using the new sufficient condition.

II. NOTATION

Let = or be either the field of complex or real numbers,
respectively. For any square matrix W 2

n�n, let �(W ) denote
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