1,834 research outputs found
Granular Solid Hydrodynamics
Granular elasticity, an elasticity theory useful for calculating static
stress distribution in granular media, is generalized to the dynamic case by
including the plastic contribution of the strain. A complete hydrodynamic
theory is derived based on the hypothesis that granular medium turns
transiently elastic when deformed. This theory includes both the true and the
granular temperatures, and employs a free energy expression that encapsulates a
full jamming phase diagram, in the space spanned by pressure, shear stress,
density and granular temperature. For the special case of stationary granular
temperatures, the derived hydrodynamic theory reduces to {\em hypoplasticity},
a state-of-the-art engineering model.Comment: 42 pages 3 fi
Timing of closure of the Mesozoic-Tethys Ocean: Constraints from remnants of a 141-135 ocean island within the Bangong-Nujiang suture zone, Tibetan Plateau
Knowledge of the timing of the closure of the Meso-Tethys Ocean as represented by the Bangong–Nujiang Suture Zone, i.e., the timing of the Lhasa-Qiangtang collision, is critical for understanding the Mesozoic tectonics of the Tibetan Plateau. But this timing is hotly debated; existing suggestions vary from the Middle Jurassic (ca. 166 Ma) to Late Cretaceous (ca. 100 Ma). In this study, we describe the petrology of the Zhonggang igneous–sedimentary rocks in the middle segment of the Bangong–Nujiang Suture Zone and present results of zircon U–Pb geochronology, whole-rock geochemistry, and Sr–Nd isotope analysis of the Zhonggang igneous rocks. The Zhonggang igneous–sedimentary rocks have a thick basaltic basement (>2 km thick) covered by limestone with interbedded basalt and tuff, trachyandesite, chert, and poorly sorted conglomerate comprising limestone and basalt debris. There is an absence of terrigenous detritus (e.g., quartz) within the sedimentary and pyroclastic rocks. These observations, together with the typical exotic blocks-in-matrix structure between the Zhonggang igneous–sedimentary rocks and the surrounding flysch deposits, lead to the conclusion that the Zhonggang igneous–sedimentary rocks are remnants of an ocean island within the Meso-Tethys Ocean. This conclusion is consistent with the ocean island basalt-type geochemistry of the Zhonggang basalts and trachyandesites, which are enriched in light rare earth elements (LaN/YbN = 4.72–18.1 and 5.61–13.7, respectively) and have positive Nb–Ta anomalies (NbPM/ThPM > 1, TaPM/UPM > 1), low initial 87Sr/86Sr ratios (0.703992–0.705428), and positive mantle εNd(t) values (3.88–5.99). Zircon U–Pb dates indicate that the Zhonggang ocean island formed at 141–135 Ma; therefore, closure of the Meso-Tethys Ocean and collision of the Lhasa and Qiangtang terranes must have happened after ca. 135 Ma
Comparison of Vlasov-Uehling-Uhlenbeck model with 4 π Heavy Ion Data
Streamer chamber data for collisions of Ar + KCl and Ar + BaI2 at 1.2 GeV/nucleon are compared with microscopic model predictions based on the Vlasov-Uehling-Uhlenbeck equation, for various density-dependent nuclear equations of state. Multiplicity distributions and inclusive rapidity and transverse momentum spectra are in good agreement. Rapidity spectra show evidence of being useful in determining whether the model uses the correct cross sections for binary collisions in the nuclear medium, and whether momentum-dependent interactions are correctly incorporated. Sideward flow results do not favor the same nuclear stiffness parameter at all multiplicities
PHP61 The Financial Impacts of Pharmacist Intervention in Inpatient Department of a Local Hospital in Taiwan
Morphometric analysis of S. mortenseni. (DOC 44Â kb
Recommended from our members
Laser-ultrasonic evaluation of damage in unidirectional ceramic matrix composites
Ceramic matrix composites (CMCs) have attracted great attention because of their potential for high temperature structural applications. Among these materials, calcium aluminosilicate (CAS) glass ceramic and similar composites reinforced by Nicalon{trademark} SiC fiber with carbon-rich interface have been under active investigation because of their {open_quotes}notch-insensitivity{close_quotes}: stress near holes and notches can be redistributed by inelastic deformation in the form of multiple matrix cracking. Therefore, stress concentration is alleviated near these sites. Understanding the damage mechanism in these composites is very important for the development of constitutive modeling. To achieve this goal, monitoring damage initiation and accumulation in-situ are especially critical. In most of the previous work, the change of elastic modulus along loading direction was used to characterize the damage. However, the overall anisotropic damages such as fiber-matrix debonding or shear deformation were unknown. In this study, we have pursued an in-situ nondestructive laser-ultrasonic technique to assess the overall anisotropic stiffness degradation under loading. When a laser pulse is brought to sample surface, high frequency acoustic waves can be generated by thermal or ablation mechanisms depending on the incident power intensity. The propagation of the elastic waves through anisotropic media is characterized by the well-known Christoffel equation
Shot noise in resonant tunneling through a zero-dimensional state with a complex energy spectrum
We investigate the noise properties of a GaAs/AlGaAs resonant tunneling
structure at bias voltages where the current characteristic is determined by
single electron tunneling. We discuss the suppression of the shot noise in the
framework of a coupled two-state system. For large bias voltages we observed
super-Poissonian shot noise up to values of the Fano factor .Comment: 4 pages, 4 figures, accepted for Phys. Rev.
Recommended from our members
The influence of fiber/matrix interface on the mechanical behavior of Nicalon SiC fiber reinforced glass-ceramic composites
Mechanical properties of unidirectional Nicalon SiC fiber reinforced Ca aluminosilicate (CAS/SiC) and Mg aluminosilicate (MAS/SiC) glass-ceramic composites were investigated by tensile testing and nondestructive laser-ultrasound technique. The Ba-stuffed MAS was either undoped or doped with 5% borosilicate glass. Degradation of elastic stiffness constant C{sub 11} in transverse direction due to interface damage was monitored in situ by measuring the laser- generated ultrasound wave velocity. The three composite materials show different characteristics of macroscopic deformation behavior, which is correlated strongly to interface degradation. A stronger reduction trend of the elastic constant C{sub 11} is associated with a larger degree of inelastic deformation. The fracture surfaces also reveal the close relation between fiber pullout length and interfacial characteristics. Interfaces of these composites were studied by TEM; their influence on inhibiting and deflecting matrix cracks is discussed
Tibetan sheep are better able to cope with low energy intake than Small-tailed Han sheep due to lower maintenance energy requirements and higher nutrient digestibilities
Tibetan sheep are indigenous to the Qinghai-Tibetan Plateau (QTP) and are well-adapted to and even thrive under the harsh alpine conditions. Small-tailed Han sheep were introduced to the plateau because of their high prolificacy and are maintained mainly in feedlots. Because of their different backgrounds, we hypothesised that Tibetan and Small-tailed Han sheep would differ in their utilization of energy intake and predicted that Tibetan sheep would cope better with low energy intake than Small-tailed Han sheep. To test this prediction, we determined nutrient digestibilities, energy requirements for maintenance and blood metabolite and hormone concentrations involved in energy metabolism in these breeds. Sheep of each breed (n = 24 of each, all wethers and 1.5 years of age) were distributed randomly into one of four groups and offered ad libitum diets of different digestible energy (DE) densities: 8.21, 9.33, 10.45 and 11.57 MJ DE/kg Dry matter (DM). Following 42 d of measuring feed intake, a 1-week digestion and metabolism experiment was done. DM intakes did not differ between breeds nor among treatments but, by design, DE intake increased linearly in both breeds as dietary energy level increased (P < 0.001). The average daily gain (ADG) was significantly greater in the Tibetan than Small-tailed Han sheep (P = 0.003) and increased linearly in both breeds (P < 0.001). In addition, from the regression analysis of ADG on DE intake, daily DE maintenance requirements were lower for Tibetan than for Small-tailed Han sheep (0.41 vs 0.50 MJ/BW0.75, P < 0.05). The DE and metabolizable energy (ME) digestibilities were higher in the Tibetan than Small-tailed Han sheep (P < 0.001) and increased linearly as the energy level increased in the diet (P < 0.001). At the lowest energy treatment, Tibetan sheep when compared with Small-tailed Han sheep, had: 1) higher serum glucose and glucagon, but lower insulin concentrations (P < 0.05), which indicated a higher capacity for gluconeogenesis and ability to regulate glucose metabolism; and 2) higher non-esterified fatty acids (NEFA) and lower very low density lipoprotein (VLDL) and triglyceride (TG) concentrations (P < 0.05), which indicated a higher capacity for NEFA oxidation but lower ability for triglyceride (TG) synthesis. We concluded that our prediction was supported as these differences between breeds conferred an advantage for Tibetan over Small-tailed Han sheep to cope better with low energy diets
Quasi-Periodic Releases of Streamer Blobs and Velocity Variability of the Slow Solar Wind near the Sun
We search for persistent and quasi-periodic release events of streamer blobs
during 2007 with the Large Angle Spectrometric Coronagraph on the \textit{Solar
and Heliospheric Observatory} and assess the velocity of the slow solar wind
along the plasma sheet above the corresponding streamer by measuring the
dynamic parameters of blobs. We find 10 quasi-periodic release events of
streamer blobs lasting for three to four days. In each day of these events, we
observe three-five blobs. The results are in line with previous studies using
data observed near the last solar minimum. Using the measured blob velocity as
a proxy for that of the mean flow, we suggest that the velocity of the
background slow solar wind near the Sun can vary significantly within a few
hours. This provides an observational manifestation of the large velocity
variability of the slow solar wind near the Sun.Comment: 14 pages, 5 figures, accepted by Soalr Physic
- …