228 research outputs found

    On the Stability of Symmetric Periodic Orbits of a Comb-Drive Finger Actuator Model

    Full text link
    In this paper, we study the stability of symmetric periodic solutions of the comb-drive finger actuator model. First, on the basis of the relationship between the potential and the period as a function of the energy, we derive the properties of the period of the solution of the corresponding autonomous system (the parameter δ\delta of input voltage Vδ(t)V_\delta(t) is equal to zero) in the prescribed energy range. Then, using these properties and the stability criteria of symmetric periodic solutions of the time-periodic Newtonian equation, we analytically prove the linear stability/instability of the symmetric (m,p)(m,p)-periodic solutions which emanated from nonconstant periodic solutions of the corresponding autonomous system when the parameter δ\delta is small.Comment: 15pages, 1 figure

    Construction of a Cities Evolution Tree, with Applications

    Full text link
    China has been experiencing urbanization at an unprecedented rate over the last two decades. This study analyzes the impact of urbanization on land occupation. Cities are clustered by their functions and development stages, which is illustrated by a cluster tree, a dynamic tree that depicts the evolution of cities. The evolution tree in one year is used to predict the state of a city in a future time period. Another application of the evolution tree is to predict urban-type relevant phenomena, such as urban occupation. It is found that comprehensive cities, business cities, and manufacturing cities have higher urban expansion rates than tourist cities, with a few exceptions that focus on both industry and tourism. Meanwhile, the speed and extent of city land growth are dominated by industrialization stages and economic patterns, as well as leap-development. The methodology presented in this study is especially suitable for identifying transition paths of a stochastic process in a complex dataset of 253 cities in China

    DKiS: Decay weight invertible image steganography with private key

    Full text link
    Image steganography, defined as the practice of concealing information within another image, traditionally encounters security challenges when its methods become publicly known or are under attack. To address this, a novel private key-based image steganography technique has been introduced. This approach ensures the security of the hidden information, as access requires a corresponding private key, regardless of the public knowledge of the steganography method. Experimental evidence has been presented, demonstrating the effectiveness of our method and showcasing its real-world applicability. Furthermore, a critical challenge in the invertible image steganography process has been identified by us: the transfer of non-essential, or `garbage', information from the secret to the host pipeline. To tackle this issue, the decay weight has been introduced to control the information transfer, effectively filtering out irrelevant data and enhancing the performance of image steganography. The code for this technique is publicly accessible at https://github.com/yanghangAI/DKiS, and a practical demonstration can be found at http://yanghang.site/hidekey

    PRIS: Practical robust invertible network for image steganography

    Full text link
    Image steganography is a technique of hiding secret information inside another image, so that the secret is not visible to human eyes and can be recovered when needed. Most of the existing image steganography methods have low hiding robustness when the container images affected by distortion. Such as Gaussian noise and lossy compression. This paper proposed PRIS to improve the robustness of image steganography, it based on invertible neural networks, and put two enhance modules before and after the extraction process with a 3-step training strategy. Moreover, rounding error is considered which is always ignored by existing methods, but actually it is unavoidable in practical. A gradient approximation function (GAF) is also proposed to overcome the undifferentiable issue of rounding distortion. Experimental results show that our PRIS outperforms the state-of-the-art robust image steganography method in both robustness and practicability. Codes are available at https://github.com/yanghangAI/PRIS, demonstration of our model in practical at http://yanghang.site/hide/

    On Trustworthiness of CPU Usage Metering and Accounting

    Get PDF
    Abstract—In the envisaged utility computing paradigm, a user taps a service provider’s computing resources to accom-plish her tasks, without deploying the needed hardware and software in her own IT infrastructure. To make the service profitable, the service provider charges the user based on the resources consumed. A commonly billed resource is CPU usage. A key factor to ensure the success of such a business model is the trustworthiness of the resource metering scheme. In this paper, we provide a systematic study on the trustworthiness of CPU usage metering. Our results show that the metering schemes in commodity operating systems should not be used in utility computing. A dishonest server can run various attacks to cheat the users. Many of the attacks are surprisingly simple and do not even require high privileges or sophisticated techniques. To demonstrate that, we experiment with several types of attacks on Linux and show their adversarial effects. We also suggest that source integrity, execution integrity and fine-grained metering are the necessary properties for a trustworthy metering scheme in utility computing. Keywords-CPU time metering; attack; utility computing I

    Radar Waveform Design for Extended Target Recognition under Detection Constraints

    Get PDF
    We address the problem of radar phase-coded waveform design for extended target recognition in the presence of colored Gaussian disturbance. Phase-coded waveforms are selected since they can fully exploit the transmit power with sufficient variability. An important constraint, target detection performance, is considered to meet the practical requirements. The waveform is designed to achieve maximum recognition performance under a control on the achievable signal-to-noise ratio (SNR) of every possible target hypothesis. We formulate the code design in terms of a nonconvex, NP-hard quadratic optimization problem in the cases of both continuous and discrete phases. Techniques based on semidefinite relaxation (SDR) and randomization are proposed to approximate the optimal solutions. Simulation results show that the recognition performance and the detection requirements are well balanced and accurate approximations are achieved

    Anatomical variation of mesophyll conductance due to salt stress in Populus cathayana females and males growing under different inorganic nitrogen sources

    Get PDF
    Synergistic regulation in leaf architecture and photosynthesis is essential for salt tolerance. However, how plant sex and inorganic nitrogen sources alter salt stress-dependent photosynthesis remains unknown. Leaf anatomical characteristics and photosynthesis of Populus cathayana Rehder females and males were investigated under salt stress conditions combined with nitrate NO3- and ammonium NH4+ supplies to clarify the underlying mechanisms. In salt-stressed females, we observed an increased mesophyll spongy cell density, a reduced chloroplast density, a decreased surface area of chloroplasts adjacent to the intercellular air space (S-c/S) and an increased mesophyll cell area per transverse section width (S/W), consequently causing mesophyll conductance (g(m)) and photosynthesis inhibition, especially under NH4+ supply. Conversely, males with a greater mesophyll palisade tissue thickness and chloroplast density, but a lower spongy cell density had lower S/W and higher S-c/S, and higher g(m) and photosynthesis. NH4+-fed females had a lower CO2 conductance through cell wall and stromal conductance perpendicular to the cell wall, but a higher chloroplast conductance from the cell wall (g(cyt1)) than females supplied with NO3-, whereas males had a higher chloroplast conductance and lower CO2 conductance through cell wall when supplied with NO3- instead of NH4+ under salt stress. These findings indicate sex-specific strategies in coping with salt stress related to leaf anatomy and g(m) under both types of nitrogen supplies, which may contribute to sex-specific CO2 capture and niche segregation.Peer reviewe

    Twist-mediated Epithelial-mesenchymal Transition Promotes Breast Tumor Cell Invasion via Inhibition of Hippo Pathway

    Get PDF
    Twist is a key transcription factor for Epithelial-mesenchymal transition (EMT), which is a cellular de-differentiation program that promotes invasion and metastasis, confers tumor cells with cancer stem cell (CSC)-like characteristics, and increases therapeutic resistance. However, the mechanisms that facilitate the functions of Twist remain unclear. Here we report that Twist overexpression increased expression of PAR1, an upstream regulator of the Hippo pathway; PAR1 promotes invasion, migration, and CSC-like properties in breast cancer by activating the transcriptional co-activator TAZ. Our study indicates that Hippo pathway inhibition is required for the increased migratory and invasiveness ability of breast cancer cells in Twist-mediated EMT

    Tuning On-Air Signatures for Balancing Performance and Confidentiality

    Get PDF
    In this paper, we investigate the trade off between performance and confidentiality in signature-based air indexing schemes for wireless data broadcast. Two metrics, namely, false drop probability and false guess probability, are defined to quantify the filtering efficiency and confidentiality loss of a signature scheme. Our analysis reveals that false drop probability and false guess probability share a similar trend as the tuning parameters of a signature scheme change and it is impossible to achieve a low false drop probability and a high false guess probability simultaneously. In order to balance the performance and confidentiality, we perform an analysis to provide a guidance for parameter settings of the signature schemes to meet different system requirements. In addition, we propose the jump pointer technique and the XOR signature scheme to further improve the performance and confidentiality. A comprehensive simulation has been conducted to validate our findings

    Spatiotemporal distribution and prediction of chlorophyll-a in Ulansuhai lake from an arid area of China

    Get PDF
    Lake Ulansuhai, a typical shallow lake in an arid area that is economically and ecologically important along the Yellow River, is currently eutrophic. Long-term (2010–2020) data on chlorophyll-a, nutrient, and environmental factors were obtained from three Lake Ulansuhai monitoring stations. The temporal and spatial distribution characteristics of Chl-a were analyzed. Additionally, a hybrid evolutionary algorithm was established to simulate and predict Chl-a, and sensitivity analysis revealed the interaction between environmental factors and eutrophication. The results indicated that (1) the seasonal variation of eutrophication showed an obvious trend of spring > summer > autumn > winter, and the concentration of Chl-a in the inlet was significantly higher than that in the outlet; (2) The inlet, center, and outlet of Ulansuhai Lake are satisfactorily affected by HEA in the best suited method. The fitting coefficients (R2) of the optimal models were 0.58, 0.59, and 0.62 for the three monitoring stations, and the root mean square errors (RMSE) were 3.89, 3.21, and 3.56, respectively; (3) under certain range and threshold conditions, Chl-a increased with the increase of permanganate index, water temperature, dissolved oxygen concentration, and ammonia nitrogen concentration, but decreased with the increase of water depth, Secchi disk depth, pH, and fluoride concentration. The results indicate that the HEA can simulate and predict the dynamics of Chl-a, and identify and quantify the relationships between eutrophication and the threshold data. The research results provide theoretical basis and technical support for the prediction and have great significance for the improvement of water quality and environmental protection in arid and semi-arid inland lakes
    • …
    corecore