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Abstract—In the envisaged utility computing paradigm, a
user taps a service provider’s computing resources to accom-
plish her tasks, without deploying the needed hardware and
software in her own IT infrastructure. To make the service
profitable, the service provider charges the user based on the
resources consumed. A commonly billed resource is CPU usage.
A key factor to ensure the success of such a business model
is the trustworthiness of the resource metering scheme. In this
paper, we provide a systematic study on the trustworthiness
of CPU usage metering. Our results show that the metering
schemes in commodity operating systems should not be used in
utility computing. A dishonest server can run various attacks to
cheat the users. Many of the attacks are surprisingly simple and
do not even require high privileges or sophisticated techniques.
To demonstrate that, we experiment with several types of
attacks on Linux and show their adversarial effects. We also
suggest that source integrity, execution integrity and fine-
grained metering are the necessary properties for a trustworthy
metering scheme in utility computing.

Keywords-CPU time metering; attack; utility computing

I. INTRODUCTION

Recent years have seen a strong growth of utility comput-
ing and cloud computing propelled by IT giants including
IBM, HP, Microsoft, Google, Sun, Intel, EMC, Amazon,
etc. They model metering and billing service similar to a
traditional public utility. In such an environment, a user
outsources her computation task either by uploading her
own application to the server, or by running the software
provided by the server. She is then billed according to the
resources consumed by the tasks. Among others, a widely
used metric is time [1]–[6]. For instance, Amazon’s EC2 [1]
charges the users based on execution hours with different
platform specifications. This resembles the pricing plans
used by power suppliers and the mobile service providers
whom a user pays in accord with the reading on the
electricity meter or based on the reported talking time. The
success of these services relies on the trustworthiness of the
underlying metering facility. However, it is more challenging
to establish trust on a CPU time metering scheme in utility
computing or cloud computing.

First, in the power supply service, the electricity meter is
a special hardware device certified by a local authority. In
utility computing, it is the operating system that manages

all resources, including CPU. Like all other software, the
operating system can be misconfigured, compromised or
subverted to the adversary’s advantage. Secondly, a phone
bill can be verified by checking a phone set’s local log.
Nonetheless, it is extremely challenging to verify a bill on
CPU time for a remote process (if not completely infeasible).

In this paper, we highlight that the trustworthiness of
a metering scheme is one of the bedrocks for the utility
computing. It is clear to observe that the utility computing
server can cheat in CPU time metering, as the entire platform
is under the server’s control. The goal of this paper is
to illustrate that the attacks are surprisingly simple and
straightforward. They do not require attacks on the OS kernel
and some of them even do not require a root privilege. More
importantly, our study shows that all attacks are rooted in the
discordance between the metering scheme and the program
execution mechanism in modern operating systems. Based
on our result, we argue that operating systems used in utility
computing should have a dedicated and customized CPU
time metering scheme.

To this end, we first identify the vulnerabilities in CPU
time metering scheme and the program execution process.
By taking advantage of these vulnerabilities, we describe
and implement several types of attacks on CPU time meter-
ing in commodity operating systems. Our systematic study
indicates that existing metering schemes are not reliable and
therefore cannot be trusted. A malicious service provider can
be tempted to overcharge its users by the easiness of the
attacks shown in this paper. More sophisticated attacks can
also be mounted by real-world service provider to maximize
its benefits. Based on the analysis of attacks, we propose
three properties a trustworthy metering scheme is expected
to possess.

ORGANIZATION. The next section examines related work.
Section III explains the CPU metering mechanism and the
problem model, and then analyzes the program execution
procedure and its vulnerabilities. The attacks are described
in Section IV. Section V shows the experiment results of the
attacks, followed by a thorough discussion in Section VI.
Section VII concludes the paper.



II. RELATED WORK

To the best of our knowledge, there exists no official
or de facto standard on CPU time metering for utility
computing. Many utility, grid or cloud computing service
providers have deployed their own metering and accounting
schemes. Amazon Elastic Compute Cloud (EC2) is a web
service providing computing infrastructure. The instance
type of EC2 specifies the hardware configurations including
EC2 Compute Unit, memory and storage size, etc [1]. For
each type of instance, a user usually pays for the standard
computing resource by hours [1]. Google App Engine [3]
offers a virtual platform for the customers to run their web
applications. The resources consumed by the application are
free as long as they do not exceed the quotas [7]. Otherwise,
the user is charged for example by CPU hours [2]. Other
time related services include SUN Grid and Microsoft Azure
[4], [5]. HP names its pricing unit as computon [6] which
is a composite of processor time and other resources.

As the predecessor of cloud computing, grid computing
has taken resource metering and accounting into consider-
ation at early stage. The Open Grid Service Architecture
(OGSA), which is the de facto standard for grids, encloses
an accounting component. The main metric for charging
a grid user also includes CPU time [8], [9]. In [10], the
authors remarked that a resource owner in grid computing
is motivated to cheat on the resource consumption of a
task. Their viewpoint was established based on the grid
architecture: a monitoring agent running on the resource
owner reports the consumption. Therefore, their suggested
approach is from the architecture and policies perspective.
Nonetheless, our finding in this paper is that the attack can be
on lower layers. The underlying operating system’s resource
metering and accounting are not trustworthy. As shown later
in the paper, the problem is rooted at the OS kernel.

In the security literature, several schemes have been
proposed to address the cheating problem for CPU consump-
tion. The earliest work is [11], which presents a mechanism
to detect any cheats in benchmark program execution. A
high-end computer vendor cannot have a shortcut to run the
benchmark program, since the buyer can verify it using a
weaker machine. Golle et. al designed schemes to detect
cheating in distributed computing [12], [13]. A distributed
computing contributor must honestly run the assigned jobs in
order to get rewarded. The proof-of-work scheme proposed
in [14] allows a verifier to check whether certain amount
of computation is accomplished by a prover. All these
schemes are built on top of one-way functions. They are
only suitable for a special type of computation, instead of
generic applications.

III. CPU TIME METERING

A. Overview of CPU Time Metering
The operating system manages all resources, including

CPU time. To ensure the fairness and effectiveness of re-

source utilization as well as user billing in some applications,
OS keeps track of each process’s resource consumption.
Typically, a process’s CPU time in Linux consists of two
portions: stime and utime. The former denotes the system
time, i.e. the total amount of time spent in the kernel mode
when the kernel runs on behalf of the process. The latter
denotes the user time, namely the total amount of time spent
when the process runs in user mode.

OS updates the CPU time utilization of a process at
every timer interrupt, which is generated at a fixed time
interval. The interval is also called jiffy or clock tick. When
the timer interrupt handler is triggered to take control, it
checks whether the current process is in user mode or kernel
mode. Then, it adds one clock tick (or jiffy) to the process’s
stime or utime accordingly1. Other processes not running on
CPU are not updated. Therefore, the resolution of CPU time
accounting is the timer interrupt interval for clock tick.

Note that in the recent version of Linux kernel (2.6.23), a
process’s CPU time has a different composition to cater to
the Completely Fair Scheduler (CFS). Nonetheless, it is still
updated based on the timer interrupt. Thus, system and user
time can be extended to the new time composition used by
CFS.

B. Problem and Threat Model

To facilitate our discussion, we consider a model similar
to the one used in [10]. We consider one user submitting
a program to the server for execution. When the task is
accomplished, the user is charged according to the amount of
consumed CPU time. We remark that CPU time is different
from response time or turnaround time which refers to
the elapsed time between user’s job submission and the
result output. Compared with CPU time consumption, the
turnaround time is less stable, since it significantly depends
on many other factors, such as system load or the scheduling
policy. Therefore, the turnaround time does not truly reflect
the amount of resource consumed by a user’s job.

A CPU time metering scheme is trustworthy if and
only if the measured time equals to the outcome from the
same job execution in the user’s own platform with the
same hardware/software specification. A dishonest service
provider has a strong motivation to inflate the CPU time
of a user job by various means. Without undermining our
analysis, we make a few conservative assumptions to weaken
the server’s attack capability. First, we assume that the
server does not attack on the OS kernel and the hardware.
Therefore, the kernel’s resource metering and accounting
service is intact. Recent advances in trusted computing [15],
[16] can help to safeguard the OS kernel. Second, we assume
that the server does not tamper with the integrity of user’s
programs. In other words, the server does not modify the
executables submitted by users. Third, the server does not

1One tick is usually 1 to 10 milliseconds.



risk the correctness of program execution if the user can
verify the outputs. In certain type of applications, a user may
have methods to verify the program integrity and execution
correctness as shown in [17]. In the subsequent discussions,
we will demonstrate that such a less aggressive adversary
can still mount many types of attacks on CPU time metering.
A server with stronger capability can perform more attacks,
and attacks discussed in this paper still work.

We do not consider a trivial attack whereby the server
simply bypasses the kernel’s metering function and reports
a spurious result to the user. As the kernel is trusted in
our threat model, a countermeasure is that the measurement
result is signed by the TPM on the kernel’s request and the
signature is then verified by the user.

CAVEAT. Note that the main goal of this paper is to
show that the normal CPU time accounting scheme is
unsuitable for the utility computing model. By studying
the attacks from a weak adversary with the aforementioned
assumptions, we avoid any exaggeration of our conclusion,
since a real-world adversary can mount more sophisticated
attacks with greater consequences.

C. A Closer Look At Program Execution and Vulnerabilities

A user program’s CPU time seems to be only determined
by its binary instructions and data, since it is the instructions
that are executed by CPU. Nonetheless, recall that CPU
time consists of both user time and system time. The latter
component involves many objects (e.g. resources and events)
in the running environment. The adversary can manipulate
those objects to her advantage.

To fully understand the security of CPU time metering, it
is desirable to examine the details of program execution. A
process’s life cycle consists of three consecutive phases: pro-
cess launch, runtime execution and exit. They are elaborated
as below.
• Process Launch: In this phase, the operating system

prepares for the program execution. First, the OS shell
creates a new process for the target program. As a child
process of the shell process, the new process invokes
execve system call to load the executable’s image into
virtual address space. execve then loads the dynamic
linker and relinquishes control to it. The dynamic linker
links the needed shared libraries and passes the control
to the main function of the program. This completes
the process launch phase and kicks off the real runtime
execution.
Note that the accounting for the program’s CPU time
usage starts immediately after the process is created,
despite that the program’s code is not executed until
it enters into main(). Therefore, all these auxiliary
subroutines, like the dynamic linking, are billed to the
process’s account.

• Runtime Execution: Once main() is entered, the process
runs based on its own control flow logic. During the

System resources
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Figure 1. An overview of potential attacks on CPU time metering

execution, it may interact with OS in several ways.

– shared library loading/unloading. Similar to the
library loaded at launch time, a shared library can
be loaded upon the program’s request.

– system calls. The user program can invoke system
calls to access the services offered by the operating
system, e.g. file management and device manage-
ment. A system call results in a state switch from
the user mode to the system mode.

– signal, interrupt and exception handling. Signals,
interrupts and exceptions are system notification
events which cause the corresponding handler to
deal with them.

– process schedule. Processes are subject to the
operating system’s scheduling. A process schedule
usually occurs when the running process yields the
CPU control, after an interrupt, etc.

All the four elements above allow a malicious server
to overcharge a user process’s CPU time. Attacks on
the first three causes unnecessary system subroutines to
run on behalf of the target process, whereas the attack
on process schedule exploits the flaw of the kernel’s
accounting mechanism. Recall that process accounting
is based on timer interrupt, and however, sometimes
context switch may occur between them. Therefore, an
adversary can leverage this measurement inaccuracy to
charge more time on the process.

• Exit: At exit time, the shared libraries loaded at the
launch time are unloaded.

To summarize, we visualize the “time-space” relation
between system resources and process life span in Fig. 1
below. Each red flag at an intersection indicates a vulnera-
bility which, as explained in the following sections, leads to
an attack by exploiting the corresponding system resource
object at a particular process execution phase.



IV. ATTACKS ON CPU TIME METERING

In this section, we show several types of attacks at
different stages of the process life based on the previous
analysis. Without loss of generality, we hereafter denote
a user program by T , which is the victim of all attacks
explained in the rest of the paper. T initially resides in
the server’s disk and waits for execution. The process
running T is denoted by PT . Hereafter, we use server to
denote collectively the hardware/software platform and the
administrator at the computation service provider whose
objective is to inflate the CPU time of PT .

A. Launch-time Attacks

During the process launch, the server prepares for T ’s
execution. It manipulates the shell and shared library utilities
to attack CPU usage metering for T .

1) Shell Attack: To execute T , the shell forks a new
process PT , which inherits from its parent process (i.e. the
shell) a logical copy of the address space and context. On
one hand, although PT is created for T , it does not execute
T ’s instructions until it runs execve() to load T ; on the
other hand, the kernel starts the CPU time metering for
PT once it comes into being. The time gap between the
process inception and the actual program load is a good
opportunity for the server to inflate the CPU time. The
server tampers with the shell’s code by injecting arbitrary
instructions between fork() and execve(). Those instructions
are executed right after PT takes control for the first time.
The CPU time utilized by those attacking instructions will
be charged to PT ’s account.

2) Shared Library Attack: Typically, T ’s execution in-
volves not only its own executable files, but also other
subroutines offered by the platform. Those subroutines are
in the form of shared libraries, which can be loaded during
T ’s startup or at runtime in an on-demand fashion 2. In
order to smoothly integrate the needed shared libraries with
T , the operating system has to perform additional functions
for initialization and clean-up, e.g. the constructor routines
and the destructor routines. The former are executed before
dlopen() returns in dynamic loading or before main() is
started in startup loading. The latter are executed before
dlclose() returns in dynamic loading, or after exit() or
completion of main() in the cases of startup loading. Fig. 2
depicts the mixture of the original code from T , shared
libraries and auxiliary functions from the server.

The utilization of shared libraries invites attacks, because
the alien instructions from either the shared libraries or
the library loading/unloading routines (the colored blocks
in Fig. 2) are executed and credited to PT ’s CPU time.
Therefore, the server can achieve its goal simply by injecting
arbitrary attacking code into the standard libraries or the
constructor/destructor routines.

2The latter type is also called dynamic loading.

program execution

Program T

Library loading/unloading routines Shared library Program Ty g/ g y g

Figure 2. An illustration of shared library usage
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Figure 3. An illustration of scheduling attack

B. Runtime Attacks

During runtime, a program usually interacts with OS and
other processes through signals, interrupts, and exceptions.
The server can exploit the interaction between PT and its
execution environment to increase its CPU time. Specifically,
the server inflates PT ’s system time by causing the kernel to
serve for PT more than needed (as in execution thrashing, in-
terrupt or exception flooding attacks). In addition, the server
can also exploit the inaccuracy in CPU time accounting to
overcharge PT (as in process scheduling attack).

1) Process Scheduling Attack: Note that process context
switch may occur in the middle of a jiffy. Therefore, the
coarse granularity time accounting sometimes does not truly
reflect the process’s CPU time. Fig. 3 illustrates such a
scenario. Process P relinquishes CPU before the arrival of
the (i + 1)-th timer interrupt. The kernel then schedules
another process P ′ to run. Therefore, when the (i + 1)-th
timer interrupt occurs, process P ′ is the current process and
its CPU time is increased by one tick, even though P ′ only
occupies CPU for a portion of a tick.

The server can exploit this inaccuracy to increase PT ’s
CPU time. An example of this crafty attack is as follows.
The server runs a malicious process P concurrently with PT .
When in running, P forks a child process and waits the child
process to exit. The child process performs no operation but
exits. After waking up, P repeats this cycle. Both P and
its child processes relinquish CPU frequently during their
execution. As a result, PT frequently uses only a fraction of
a jiffy and its CPU time consumption is expanded compared
with in normal execution.

2) Execution Thrashing Attack: Many commodity op-
erating systems offer a process trace facility which is
widely used in debugging programs or monitoring processes.
The trace facility allows one process to stop and resume
PT ’s execution by issuing “red light” signals and “green
light” signals. As a result, PT ’s process switches between
running and sleeping states back and forth following the
trace process’s commands. Every state transition entails
non-negligible computation for additional instructions, sig-



nal/exception handling and context switches. Therefore, the
CPU time for PT is increased. We emphasize that the
objective of the thrashing attack is to expand the CPU time,
instead of the turnaround time though the latter is increased
more significantly.

In Linux platforms, the ptrace() system call is the func-
tion used for process tracing. Other operating systems have
similar functions. ptrace() can be used to trace a process’s
signal handling and system calls. It can also be used to set
up breakpoints of the traced process or to make a process
running in the single-step mode. Without loss of generality,
we use the breakpoint as an example to explain the details
of the thrashing attack.

After PT starts running, the server creates another process
P . P attaches itself to PT using ptrace() system call
and becomes the parent of PT . The attach operation stops
PT by using the SIGSTOP signal. When P is informed
that PT stops, it wakes up from wait(). It then picks an
address A from PT ’s virtual address space and initializes
two debug registers DR0 and DR7 with A and other control
information. Next, it makes another ptrace() system call to
command PT to resume its execution, and then wait again
for PT ’s stop. When PT ’s execution accesses address A, a
debug exception is generated, which stops PT and wakes up
P . Then, P repeats this attack.

3) Interrupt Flooding Attack: Most operating system
takes a process-independent approach in dealing with inter-
rupts and accounting. An interrupt causes the current running
process (e.g. P ) to pause since the kernel has to run the
interrupt handler. The CPU time consumed by the handler
is then credited to P , no matter whether the interrupt has
any relevance to P or not.

Therefore, the server can take advantage of this implau-
sible accounting mechanism to increase PT ’s CPU usage.
It pesters PT by generating a flood of interrupts, e.g. I/O
events. Consequently, PT ’s system time is inflated. Note that
in utility computing settings, a user process usually does
not share the (virtual) platform with other users. Therefore,
although interrupt flooding is an attack on the system, PT

is the main victim.

4) Exception Flooding Attack: Another way to increase
PT ’s system time is to introduce more exceptions. Similar
to interrupts, an exception triggers the kernel to to save the
context of the present process and run the exception handler.
Since many exceptions terminate or stop the process, the
server can attack T by using “soft” exceptions, which allow
PT to resume. The page fault exception due to page miss
in the physical memory is a suitable choice. When PT is
running, the server may introduce frequent page faults by
exhausting available memory space.

V. EXPERIMENT RESULTS

A. Experiment Setting

We implement the attacks in the previous section to show
how the server can easily attack a user process’s CPU time.
All experiments are run on a DELL OptiPlex 755 with Intel
Duo core CPU E7200 @2.53G HZ. One core is disabled.
The operating system in use is Ubuntu 8.10 with kernel
v2.6.29.1. Our test programs are listed below.

1) Our programs: A family of programs written by
us to highlight the effect in some attacks.

2) Pi: An open source C program to calculate the value
of π [18].

3) Whetstone: A benchmark program to test computer
performance [19].

4) Brute: A program to crack MD5, SHA256 and
SHA512 by brute force attacks [20]. We run it to
attack MD5 with the brutefile offered by the program
author. A main feature of Brute is that it spawns many
threads to search for a hash collision.

To avoid verbosity, we hereafter use O, P, W and B to
denote these four programs, respectively. We implemented
the attacks described in Section IV and ran them on each
of the testing programs. In our experiment setting, there
are no other user processes except those testing ones and
the attack processes. We also shut down all unnecessary
system services in order to minimize the system load. This
is to simulate the dedicated platform utilization in utility
computing to the largest extent. In the exit of each testing
program, the getrusage is called to log the system time and
user time usage.

All the figures in this section (except Fig. 7 and Fig. 8)
depict the attack effects on all four programs. The Y axis
shows the CPU time in seconds, while the X axis indicates
different programs. For each program, there are a pair
of bars. The left bar represents its CPU time in normal
execution while the right one represents its CPU time with
attacks.

B. Attack Effects

1) Shell Attack: We perform the shell attack by modi-
fying the function execute disk command() of the bash
source code. Specifically, we inject a segment of code
between make child() and shell execve() within this func-
tion. The attacking code comprises about 234 times of loops
and therefore is CPU bound. Fig. 4 shows the CPU time
growth of all four testing programs. Note that their system
time usage are not affected by the attack. (The system time
used by the first three programs are too little to be shown.)
The figure also shows that the user time of the four programs
are increased by almost the same amount,i.e. roughly 34
seconds. This is because the time growth is all due to the
same piece of code.
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Figure 6. Shared library function substitution attack

2) Shared Library Attack: One type of shared library
attacks is to tamper with the constructor and destructor
functions. The two functions are compiled to an attack
shared library. The constructor and destructor functions are
declared as follows:
• attribute((constructor)) void test init t(void)
• attribute((destructor)) void test fini t(void)

We only implement the constructor and the destructor is
similar. We set the LD PRELOAD environment variable to
the malicious shared library, so that it will be loaded when
the test programs are launched. The results are shown in
Fig. 5. Not surprisingly, they are almost identical to Fig. 4.
In essence, the same attacking code is executed at different
locations.
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Figure 7. Process scheduling attack on Whetstone
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The server can also inject the attacking code into a shared
library function. We fake a malicious malloc() function,
which first executes the attacking code and then call the
genuine malloc() function. We set the LD PRELOAD
environment variable to overwrite the path to the genuine
library and use the faked one. The same trick is played for
the sqrt() function. Fig. 6 shows the attack effect. Similar to
previous experiments, the system time usage is not affected.
The only difference from previous experiment is that the
effects are amplified, since the faked function containing
the attacking code is invoked multiple times.

3) Process Scheduling Attack: We implement an attack
program described in Section IV-B1, which runs a cycle of
snatching CPU control and then relinquishing it. The attack
program quits after forking 221 child processes. We applied
this attack on O, P and W, and observed the similar result.
Fig. 7 shows the effect of attacking W.

The green bars (the upper one) in the figure represent
the CPU time used by our attack program, whereas the
blue bars (the lower one) represent CPU time used by
Whetstone. The X axis shows different priorities(different
nice values) of the attacking program Fork. The leftmost
bar pair show the CPU time used by W and the attack
program Fork when they are executed independently, i.e.
no attacks. The second bar pair show both program’s time
consumption when running concurrently, i.e. the attack is in
place. The CPU time change becomes more noticeable when
the attacking program’s priority becomes higher. Although
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both programs start and exit normally, the CPU time for the
attacking program decreases while the time for Whetstone
increases. More importantly, the sum of them almost remains
the same. It implies that a portion of time used by the
attacking program is mistakenly accounted to W. Note that
the higher the privilege of the attack program, the CPU
time of W is increased more. The possible reason is that
program Fork has longer quantum within a scheduling epoch
and scheduling happens more frequently for higher priority
Fork program. Therefore, the higher privilege of the attack
program implies more chances for CPU time miscounting.

This attack is not effective for Brute program, as shown
in Fig. 8 because it forks many threads which are scheduled
as processes in Linux. Therefore, the accounting error does
not affect the overall time significantly.

4) Execution Thrashing Attack: We implement the
thrashing attack by setting breakpoints. Program O is similar
to it in the shell attack. Breakpoint is set at the loop control
variable frequently accessed. For B, the breakpoint is set at
a variable count in crack len() function. To maximize the
effect, we set PER THREAD TRIES to 50 so that this
breakpoint is accessed for about 895 thousand times. For P
and W, we choose variable y and T1 which are accessed
about 107 times and 2 × 105 times respectively. The result
is shown in Fig. 9. Clearly, the attack mostly increases the
system time of the test process due to the exception, signal
handling and context switches.

5) Interrupt Flooding Attack: We create an interrupt
flood by sending junk IP packets to the testing computer
from another PC. An interrupt is raised whenever the testing
computer’s network adapter receives a packet. Since none
of the target programs needs network communications, the
flood of packets will not be received and therefore has
no consequences to their execution results. We applied the
attack on four target programs one by one. The results are
shown in Fig. 10. Note that their system time are slightly
increased, due to the extra interrupt handler.

6) Exception Flooding Attack: Following discussion in
Section IV-B4, we create a flood of page fault exceptions
by running an attack program which exhausts all available
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Figure 10. Interrupt flooding attack
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Figure 11. Exception flooding attack

physical memory. Specifically it requests more than 2 giga-
bytes memory which is beyond the capacity of the physical
memory in the testing platform. To force kernel to allocate
memory, or reallocate memory if it is reclaimed, the attack
program continuously writes data and reads them later. The
results are shown in Fig. 11. When memory is scarce, page
swap from disk is more frequent, resulting in more exception
handling and context switches. Another factor is the disk
accesses which also contribute to the CPU time increase.

C. Comparison

We make a comparison among the attacks discussed in the
previous section. The comparison is based on the following
aspects: vulnerabilities exploited, attack strength and side
effect.

Vulnerabilities Exploited. The shell attack and the
shared library attacks aim at PT ’s user time. They exploit
the fact that PT encloses not only the program T , but also
additional code segments from the system. The execution
thrashing attack, and the interrupt and exception flooding
attacks aim at PT ’s system time. These three attacks trigger
off unsolicited system events which cause the kernel to use
extra CPU time to make proper responses. If the spamming
event happens during PT ’s execution, the kernel’s service
cost is accounted to PT . The process scheduling attack
mainly exploits the imprecision of CPU time metering,



which is caused by the coarse granularity of the kernel’s
time metering scheme.

Attack Strength. The shell and shared library attacks are
the most aggressive one because the inflated CPU time can
be arbitrarily long. In other attacks, the server cannot predict
precisely the amount of cheating. The interrupt flooding and
the exception flooding are the weakest, since they do not
impact CPU time significantly because of the following two
reasons. First, the kernel’s execution of interrupt/exception
handlers and context switch are much less costly than
the execution of user processes. Secondly, the number of
interrupts and exceptions generated cannot be very huge.
Moreover, for interrupt attack, the probability for PT to get
hit by them depends on whether it is running on CPU at that
moment. Therefore, PT ’s extra CPU time is only a share of
the overall overhead. For exception, if the physical memory
is very heavily used, a process will be killed by the kernel
due to lack of physical memory resource. Thus, the amount
of issued page fault is capped.

The execution thrashing attack can be very effective as
the attack directly impacts PT ’s execution. The CPU time
inflation can be adjusted by the number of breakpoints. The
effectiveness of the process scheduling attack is compara-
tively less predictable, because it relies on many runtime
factors, e.g. the scheduling algorithm, the system load, etc.

Side Effects and Limitations. All of the attacks have
side effects. The shell attack increases the CPU time for all
programs started from the same attacked shell. The shared
library attack inflates the time for all programs calling the
library functions. Nonetheless, these side effects can be
mitigated by customizing the settings for the target user with
a designated shell and local environment variables.

The interrupt flooding and the exception flooding are
essentially a denial-of-service attack on the whole system.
Therefore, all system processes suffer from it. The execution
thrashing attack has the least side effect, since it exactly aims
at PT . Nonetheless, the execution of ptrace (or utrace in
newer kernel versions [21]) requires privileges controlled by
the Linux Security Modules [22], [23]. The process schedul-
ing attack also requires the root privilege since the attack
program has to elevate its own priority. These privilege
prerequisite may not be satisfied in all utility computing
applications.

VI. DISCUSSION

A. Trustworthiness in CPU Time Accounting

The ultimate goal of utility computing is for users to tap
the computing service as a utility. Our discussion has shown
that unlike other utilities, it is not straightforward to provide
trustworthiness of CPU time metering. Without tampering
with the operating system kernel or the executed program,
the server can still easily mount various attacks to inflate the
program’s CPU usage. This has grave negative impact to the
success of utility computing. No matter whether CPU hours

or CPU seconds are used as the pricing unit, the important
caveat is that the existing metering scheme is not qualified as
the foundation of trust to run business applications. On the
one hand, the weak trustworthiness of the metering scheme
allows a server to cheat. On the other hand, it allows the
customers to deny their bills by questioning the trueness of
the usage. Therefore, we remark that a secure CPU time
metering is one of the bedrocks for trust establishment
between customers and service providers and therefore is
pivotal to utility computing.

B. Desirable Properties

Based on the attack analysis, we define several desirable
security properties for a platform to fairly and securely
measure a process’s CPU time. We also suggest promising
approaches to achieve the properties.

Source Integrity. This property refers to that only the
expected code should be executed in the context of a user
process. The expected code includes the programs submitted
by the user and other standard subroutines expected to be
executed. The subroutines can be code at application level,
OS level and kernel level.

The shell attack and the library attacks in Section IV are
essentially attacks on source integrity. Other attacks include
malicious modifications on the user program or other system
libraries in order to increase the execution time.

One possible solution is the TPM based remote attes-
tation [15], [16], [24] proposed by the trusted computing
community. The scheme in [24] allows the server to attest
the closure of a program (i.e. all instructions possibly to be
run) to a verifier. The security of the attestation scheme is
built upon the TPM chip [16]. Unfortunately, all existing
remote attestation schemes including [24] suffer from the
gap between the time-of-measure and time-of-use.

Execution Integrity. Note that the attacks described in
Section IV are rather weak in the sense that they do not
tamper with the program execution. A more sophisticated
attack would be that the server tamper with the control
flow of a program. For example the server may modify
the registers which controls the flow so that the process
takes a much longer execution path to finish. Control-data
attack and non-control-data attack [25] can all be used to
corrupt program execution. Some possible attacks would
be performed by changing the input from terminal, disk
and other I/O device, Inter-Process Communication, etc.
Execution integrity is to ensure that such attacks on the
program control flow can be detected by the users. This
task is more challenging than source integrity attack because
the program outputs are not always verifiable. The proof-of-
work schemes are proposed in [11], [13], [14], [26]. Most of
them only deal with well-structured mathematical functions.
Since they are not suitable for generic software, it is not
applicable to utility computing. It is an open problem of
verifying the integrity of the control flow.



Fine-grained Metering. Existing commodity operating
systems use coarse-grained CPU time metering scheme.
A fine-grained metering scheme has twofold implications.
First, the code being measured is fine-grained, in the sense
that only those instructions executed on behalf of a process
should be added to its CPU time. In existing metering
scheme, the execution of an I/O interrupt handler is ac-
credited to the current running process. This is unfair if
the running process is not the one issuing I/O request or
receiving the data. The interrupt flooding attack introduced
before actually exploits this defect. In fact, this problem
has been addressed in the real-time system research, e.g.
in [27], where the system timely response is of paramount
importance. Unfortunately, the general purpose operating
systems have not adopted the proposed process-specific
scheduling and accounting.

The other implication of fine granularity is the time metric
in use. Many operating systems only count the number of
system ticks used by the process, which is usually at the
granularity of milliseconds. The process scheduling attack
takes advantage of this defect. Although a process is only
executed in a fraction of a tick, its CPU time will be
increased with one tick if it is running when the timer
interrupt occurs. In fact, most modern processors has a built-
in time stamp counter (TSC) which can be accessed by
mainstream operating systems like Windows and Linux. For
the utility computing, a more accurate CPU time metering
scheme can be built on TSC.

C. Metering Other Resources

Utility computing may include other services besides CPU
power. For instance, a service provider may bill a user based
on the number of database transactions, the number of bytes
her task communicates, or the amount of storage her data
occupies. For these types of services, the charged resource
consumption is possibly easier to verify, because they are
transaction oriented. For example, a user uploads a file to
the server and keeps a log on the file size. Therefore, the user
can verify the claimed resource utilization by comparing it
with her local transaction log.

VII. CONCLUSION

In this paper, we study the trustworthiness of CPU time
metering and accounting in utility computing settings. We
remark that the existing metering and accounting scheme
provided by the general-purpose operating system does not
satisfy the security requirement of utility computing. We
have described and implemented several attacks whereby the
server can inflate a user process’s system/user time without
subverting the program or the kernel. More sophisticated
attacks without these restrictions can also be mounted by
the real-world server. In the future, more attacks on virtual
machine model will be studied. Based on our analysis on

these attacks, we suggested source integrity, execution in-
tegrity and fine-grained metering as three properties an CPU
time metering scheme should necessarily have to fairly and
securely measure a process’s CPU time for utility computing
or cloud computing.
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