

https://helda.helsinki.fi

Anatomical variation of mesophyll conductance due to salt stress in Populus cathayana females and males growing under different inorganic nitrogen sources

Liu, Miao

2021-08

Liu, M, Liu, X, Du, X, Korpelainen, H, Niinemets, U & Li, C 2021, 'Anatomical variation of mesophyll conductance due to salt stress in Populus cathayana females and males growing under different inorganic nitrogen sources', Tree Physiology, vol. 41, no. 8, pp. 1462-1478. https://doi.org/10.1093/treephys/tpab017

http://hdl.handle.net/10138/339732 https://doi.org/10.1093/treephys/tpab017

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

1 <u>TP-2020-372.R1</u>

2	
3	Anatomical variation of mesophyll conductance due to salt stress
4	in Populus cathayana females and males growing
5	under different inorganic nitrogen sources
6	
7	Miao Liu ¹ , Xiucheng Liu ¹ , Xuhua Du ² ,
8	Helena Korpelainen ³ , Ülo Niinemets ^{4, 5} , Chunyang Li ^{1, *}
9	
10	¹ College of Life and Environmental Sciences, Hangzhou Normal University,
11	Hangzhou 311121, China
12	² Key Laboratory of State Forestry and Grassland Administration on Bamboo
13	Resources and Utilization, China National Bamboo Research Center, State Forestry
14	and Grassland Administration, Hangzhou 310012, China
15	³ Department of Agricultural Sciences, Viikki Plant Science Centre, University of
16	Helsinki, P.O. Box 27, FI-00014, Finland
17	⁴ Institute of Agricultural and Environmental Sciences, Estonian University of Life
18	Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
19	⁵ Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
20	* Corresponding author: Chunyang Li, E-mail address: <u>licy@hznu.edu.cn</u>
21	
22	Running title: Sexually different responses to salt and N forms

Abstract Synergistic regulation in leaf architecture and photosynthesis is essential for 23 salt tolerance. However, how plant sex and inorganic nitrogen sources alter salt 24 25 stress-dependent photosynthesis remains unknown. Leaf anatomical characteristics and photosynthesis of Populus cathayana Rehder females and males were 26 investigated under salt stress conditions combined with NO₃⁻ and NH₄⁺ supplies to 27 clarify the underlying mechanisms. In salt-stressed females, we observed an increased 28 mesophyll spongy cell density, a reduced chloroplast density, a decreased surface area 29 of chloroplasts adjacent to the intercellular air space (S_c/S) and an increased 30 mesophyll cell area per transverse section width (S/W), consequently causing 31 mesophyll conductance (g_m) and photosynthesis inhibition, especially under NH_4^+ 32 supply. Conversely, males with a greater mesophyll palisade tissue thickness and 33 34 chloroplast density, but a lower spongy cell density had lower S/W and higher S_c/S , and higher g_m and photosynthesis. NH₄⁺-fed females had a lower CO₂ conductance 35 through cell wall and stromal conductance perpendicular to the cell wall, but a higher 36 37 chloroplast conductance from the cell wall (g_{cvt1}) than females supplied with NO₃, while males had a higher chloroplast conductance and lower CO₂ conductance 38 through cell wall when supplied with NO₃⁻ instead of NH₄⁺ under salt stress. These 39 findings indicate sex-specific strategies in coping with salt stress related to leaf 40 anatomy and g_m under both types of N supplies, which may contribute to sex-specific 41 CO₂ capture and niche segregation. 42

Keywords: Leaf anatomy, mesophyll conductance, N form, salt stress, sexual
dimorphism

46 Introduction

47

Salt stress reduces plant biomass and crop production, and these changes are typically 48 strongly correlated with a decreasing rate of photosynthesis (Praxedes et al. 2010, 49 Wankhade et al. 2013). Photosynthesis is a critical factor that determines energy 50 conversion efficiency, thereby regulating plant productivity and performance 51 52 (Pinheiro and Chaves 2011, Ort et al. 2015). It has been suggested that CO₂ stomatal limitations, including stomatal (g_s) and mesophyll (g_m) conductance limitation, are 53 primary factors restricting leaf photosynthesis (A) in salt-stressed leaves (Flexas et al. 54 55 2016, Zait et al. 2019, Veromann-Jürgenson et al. 2020). Leaf dehydration induced by drought and/or salt stress reduces g_s to control the transpirational water flow from 56 leaves (Golldack et al. 2014). However, lower g_s reduces CO₂ flux into leaves, and 57 then results in the limitation of A and carbon starvation in plants. The g_m value 58 indicates CO_2 diffusion from the sub-stomatal cavities to the sites of carboxylation. 59 According to a previous simulation performed by Zhu et al. (2010), doubling of $g_{\rm m}$ 60 could improve photosynthetic rates by nearly 20% under normal growth conditions. In 61 62 stressed plants, the photosynthetic limitation due to g_m can be much greater than in non-stressed plants (Martins et al. 2014, Niinemets and Keenan 2014). Therefore, it is 63 important to clarify, whether and how salt stress affects g_m and then leaf A in 64 dioecious plants. 65

The g_m values of given genotypes or species are associated with changes in leaf 67 anatomical traits, especially under environmental stresses (Niinemets et al. 2009a, Lu 68 et al. 2016). Generally, leaves with a robust structure and higher LMA show lower g_m 69 and photosynthesis (Niinemets et al. 2009b, Tomás et al. 2013). Plants with higher 70 LMA usually have a greater biomass investment in supporting tissues, thicker cell 71 walls, a lower cytoplasm and higher stroma conductance to CO₂ diffusion inside 72 leaves (Niinemets 2007, Tomás et al. 2013). Inside a leaf, CO₂ from substomatal 73 74 cavities diffuses through the intercellular air space and liquid phase consisting of the cell wall, cytoplasm, plasma membrane, chloroplast stroma and envelope (Tosens et al. 75 2012b, Cano et al. 2013). The CO₂ liquid-phase resistance accounts for 80-90% of 76 77 mesophyll resistance (Lu et al. 2016, Tosens et al. 2016).

78

Among CO₂ liquid-phase diffusion components, the cell wall thickness of the leaf 79 80 mesophyll and the chloroplast surface area exposed to intercellular air space (S_c/S) have been considered as the strongest limiting factors of g_m , but these traits are highly 81 different among species (Tomás et al. 2013, Berghuijs et al. 2016). An increased 82 mesophyll cell wall thickness and decreased S_c/S can probably increase the CO₂ 83 diffusion path length and area, which will limit g_m in plants (Terashima et al. 2011, 84 Tomás et al. 2013). In addition, the increased mesophyll surface area exposed to the 85 intercellular air space (S_m/S) facilitates CO₂ diffusion from the cytosol into 86 chloroplasts, which promotes photosynthesis via greater g_m (Ren et al. 2019, Hu et al. 87

2020). Other cellular components, such as chloroplasts, plasmalemma and cytoplasm 88 also affect CO₂ diffusion into leaves (Tomás et al. 2013, Lu et al. 2016). A higher 89 mesophyll cell density typically decreases the air space size, which probably 90 decreases the CO₂ gas-phase conductance (Tomás et al. 2013, Lu et al. 2016). Also, a 91 recent study has indicated that a large total mesophyll cell area per transverse section 92 width (S/W) is advantageous as balancing the leaf structure and CO₂ assimilation (Hu 93 et al. 2020). Therefore, knowledge of leaf structural and anatomical traits affecting g_m 94 is crucial for understanding photosynthetic efficiency, especially under abiotic 95 96 stresses.

97

Generally, salt stress induces leaf dehydration and leads to the reduction of g_m and g_s 98 in plants (Wang et al. 2018, Zait et al. 2019). Leaf dehydration reduces the internal air 99 space volume and increases the cell wall thickness (Henry et al. 2000, Tosens et al. 100 2012a). The size and shape of chloroplasts and mesophyll cells are also strongly 101 102 affected by leaf dehydration (Scoffoni et al. 2017). Such changes probably have major 103 implications for g_m (Tosens et al. 2012a) and suggest that salt stress may lead to analogous changes. How g_m is affected by salinity is still an open question, especially 104 in trees. Moreover, little is known about the effects of salt stress on leaf anatomy and 105 photosynthesis under different inorganic N sources, e.g. NH4⁺ vs. NO3⁻. 106

107

108 Poplars are dioecious species, in which females and males have significant differences109 in biomass partitioning, photosynthesis, carbon-nutrient balance and leaf anatomical

traits when exposed to abiotic stresses, including salt stress (Li et al. 2016, Chen et al. 110 2016, Liu et al. 2020a, Liu et al. 2021), which is further affected by N forms (Chen et 111 al. 2011, Liu et al. 2020b). Poplars preferentially take up NO_3^- when both NH_4^+ and 112 NO₃⁻ are given at the same concentration, and growth may be accelerated despite high 113 energy requirements (Bi et al. 2020). Energy costs do not differ between NO₃⁻ and 114 NH4⁺ when the assimilation of NO3⁻ occurs in the shoots, especially under abiotic 115 stress (Guo et al. 2007). Interestingly, poplar females have a higher specific root 116 length (SRL), which indicates a lower carbon cost but a weaker root exploration 117 capacity compared to males, while lower SRL in males may facilitate the utilization 118 of less-mobile NH4⁺ (Xia et al. 2020). Sex- and N form-dependent root system 119 architecture investments largely reflect energy requirement for foliage construction 120 121 and, thereby, may affect g_m and photosynthesis. Niinemets (1999) has proposed that the fraction of the annual biomass invested in foliage decreases in older trees, which 122 results from biomass being largely invested in roots and stems. As discussed above, 123 we hypothesize that N forms affect root biomass allocation with further modifications 124 of leaf anatomy and $g_{\rm m}$. 125

126

In this study, we employ *Populus cathayana* to examine sex-specific adaptive strategies to salt stress under NO_3^- and NH_4^+ supplies with the following hypotheses: (1) sex-specific trade-offs between leaf anatomical properties and g_m determine sex-specific differences in salt adaptation; (2) N forms affect root energy allocation, with further modifications in leaf anatomy and g_m under salt stress in a sex-dependent

132	manner. This study will not only help us to improve understanding of the response of
133	foliar architecture to photosynthesis under salt stress and different N forms, but it will
134	aid to predict photosynthetic behaviour in tree species with different N source
135	preferences and spatiotemporal changes in N assimilation at rising atmospheric CO ₂ .
136	
137	Materials and methods
138	
139	Plant material and experimental design
140	
141	Cuttings of P. cathayana were obtained from different trees of each sex from
142	populations in riparian and valley flat habitats of the Qinghai Province, China (30° 67'
143	N, 104° 06' E), as explained in detail by Liu et al. (2020a). The cuttings were planted
144	in March 2019 at the Hangzhou Normal University, China, (30° 01' N, 104° 07' E).
145	The seedlings were cultivated in a semi-controlled greenhouse with a daytime
146	temperature of 21-25 °C, a night-time temperature of 15-18 °C, a photoperiod of
147	12-14 h, and a relative humidity of 76-81% throughout the growth period. After
148	growing for 5 weeks, 32 uniform and healthy seedlings (16 females and 16 males)
149	with heights of 30-40 cm were transplanted into 10-l plastic pots with a 10-kg mixture
150	of sand, vermiculite and perlite (1:1:1).
151	

The experiment was completely randomized with two sexes (males, females), two N regimes (NO_3^-, NH_4^+) , and two NaCl levels (-NaCl, +NaCl). Each treatment was replicated four times. The plants were fertilized every 2 days with 200 ml nutrient solution (pH = 6.0) containing either 3.75 mM NH_4^+ or 3.75 mM NO_3^- as the N source (see Table S1 for the full composition of nutrient solutions). After the seedlings had grown for a further 30 days, half of the cuttings were treated with 200 ml NaCl (200 mM) administered every day until the final NaCl concentration reached 50 mM kg⁻¹ growth substrate. Each day, the control cuttings received the same amount of distilled water.

161

162 *Gas exchange and fluorescence measurements*

163

Chlorophyll fluorescence and gas exchange characteristics of mature leaves were 164 165 measured with a portable photosynthesis measuring system (L1-6400; Li-Cor Inc., Lincoln, NE, USA) equipped with an integrated leaf chamber fluorometer 166 (LI-6400-40). The measurements were conducted between 09:00 h and 16:30 h. The 167 standard environmental conditions during measurements of leaf photosynthetic 168 characteristics were as follows: leaf temperature of 25 °C, saturating photon quantum 169 flux density (PPFD) of 1200 μ mol m⁻² s⁻¹ (with 90% red light and 10% blue light), 170 relative humidity of 75%, air flow rate of 500 μ mol s⁻¹ and CO₂ concentration in the 171 cuvette (C_a) of 400 µmol mol⁻¹. After leaf gas exchange rates stabilized, typically in 172 20-30 min, the steady-state fluorescence yield (F_s) was recorded, and a saturating 173 light flash of 8000 μ mol m⁻² s⁻¹ for 0.8 s was given to measure the maximum 174 fluorescence yield at the light-adapted state (F_m') . For measurements of chlorophyll 175

176	fluorescence, leaves were adapted to the dark for 30 min using an aluminium foil
177	cover. The minimum fluorescence (F_0) and maximum fluorescence (F_m) were
178	measured. After these measurements, CO_2 response curves were measured with C_a
179	lowered stepwise from 400 to 300, 200, 100 and 50 μ mol mol ⁻¹ , and then raised from
180	50 to 400, 600, 800 and 1000 μ mol mol ⁻¹ , while all other environmental conditions
181	were maintained. The chlorophyll fluorescence characteristics, $F_{\rm S}$ and $F_{\rm m}$ ', were also
182	measured at each C_a .
183	
184	Estimation of g_m by chlorophyll fluorescence and gas exchange
185	
186	The photochemical efficiency of photosystem II (Φ_{PSII}) was calculated according to
187	Genty et al. (1989):
188	
189	$\Phi_{\rm PSII} = (F_{\rm m}' - F_{\rm s}) / F_{\rm m}'(1)$
190	
191	The electron transport rate from chlorophyll fluorescence (J) was calculated as
192	follows:
193	
194	$J = \Phi_{\text{PSII}} \cdot Q \cdot \alpha \cdot \beta (2)$
195	
196	where the product $\alpha\beta$ (β is the fraction of light absorbed by PSII, and α is leaf
197	absorptance) is obtained from the correlation between photosynthetic rate (A) and Q

198 • $\Phi_{PSII}/4$ using the light response curve under non-photorespiratory conditions ([O₂] < 199 1.0%) (Yin et al. 2009). The light response curve under low [O₂] was measured based 200 on the method of Lu et al. (2016). *Q* is *PPFD*.

201

The CO₂ response curves were used to estimate g_m according to the variable *J* method proposed by Harley et al. (1992); g_m was calculated as follows:

204

205
$$g_{\rm m} = \frac{A}{C_{\rm i} - \frac{\Gamma^* (J + 8(A + R_{\rm d}))}{J - 4(A + R_{\rm d})}}$$
(3)

206

where R_d is the dark respiration rate continuing in light, and Γ^* is the hypothetical 207 CO_2 compensation point in the absence of R_d (Bernacchi et al. 2001, Tosens et al. 208 2012b). Then, g_m was used to transform A/C_i response curves into A/C_c response 209 curves by the equation $C_c = C_i - A/g_m$ and $I^* = C_i^* + R_d/g_m$. C_c was used to calculate 210 the maximum velocity of carboxylation and the photosynthetic electron transport 211 according to the method of Bernacchi et al. (2002). Each g_m was replicated four times 212 for every specimen. R_d and Ci^{*} were measured according to Brooks and Farquhar 213 (1985). Briefly, the A/C_i curve was generated at PPFD of 150, 300 and 600 μ mol m⁻² 214 s⁻¹, with each having four C_a chambers (50, 75, 100 and 150 µmol CO₂ mol⁻¹). The 215 x-axis and y-axis of the intersection point of three A/C_i curves represented C_i^* and R_d , 216 respectively. 217

220	
221	Leaf construction costs [CC, g glucose (g dry mass) ^{-1}] were calculated from ash [g
222	$g^{-1}(d.m.)$], N [g $g^{-1}(d.m.)$] and H_c [kJ $g^{-1}(d.m.)$] according to Williams et al. (1987):
223	
224	$CC = \{ [(0.06968 \times H_c - 0.065) (1 - ash)] + [(K \times N/14.0067)(180.15/24)] \} / 0.89 (4)$
225	
226	where K is the substrate of nitrogen oxidation state, $+5$ for nitrate and -3 for
227	ammonium. H_c is the ash-free heat of combustion.
228	
229	Microscopic observations and anatomical measurements
230	
231	Leaf segments (1×1 mm) were taken from leaves avoiding major veins, and fixed in a
232	formaldehyde, acetic acid and alcohol solution (1:1:8 v/v) under vacuum for 20 min.
233	Thereafter, the samples were thoroughly washed three times with deionized water and
234	dehydrated in a graded ethanol series. Sections were embedded in glycol methacrylate
235	under vacuum. Semi-thin cross-sections were stained with safranin-fast green and
236	viewed under a light microscope (Nikon Corporation, Kyoto, Japan) at $20 \times$
237	magnification. The following characteristics were measured from light micrographs:
238	the thickness, size and density of leaf palisade and spongy tissues, and the sum of
239	spongy and palisade tissue cell area per transverse section.
240	

241 In addition, leaf samples were cut and fixed in 4% (v/v) glutaraldehyde in sodium

phosphate buffer (0.2 M, pH = 7.2) overnight. The samples were thoroughly washed 242 three times with a sodium phosphate buffer and then post-fixed in 1% (w/v) osmium 243 244 tetroxide for 1 h. After dehydration in a graded ethanol series, the samples were immersed in 1:3 (v/v) Spurr's resin and acetone. The dehydrated samples were 245 embedded in Spurr's resin and dried on glass slides. Ultrathin (90 nm) cross sections 246 were stained with 2.0% uranyl acetate (w/v) and lead citrate, and viewed with a 247 transmission electron microscope (H-7650, Hitachi, Tokyo, Japan). Cell wall 248 thickness (T_{cw}), the distance between two neighbouring chloroplasts (ΔL_{chl}), 249 cytoplasm thickness (T_{cyt}), chloroplast distance from the cell wall ($\Delta_{Lcyt,1}$), and 250 chloroplast thickness (T_{chl}) and length (L_{chl}) were measured at 20,000-40,000× 251 magnification. Each anatomical characteristic per specimen was determined from four 252 253 to six different fields of view for each section and calculated based on the method of Tomás et al. (2013). All photographs were analysed with Image J (Wayne 254 Rasband/NIH, Bethesda, MD, USA). 255

256

257 S_c/S and mesophyll surface area (S_m/S) exposed to intercellular air space per leaf area 258 were calculated as follows:

259

$$S_{c}/S = \frac{L_{mes}}{W}F(5)$$

261

$$S_{\rm m}/S = \frac{L_c}{L_{\rm mes}} S_{\rm m}/S \ (6)$$

where L_c and L_m are the distances of the chloroplast surface area and the mesophyll 264 cells facing the intercellular air space, respectively; W is the width of the measured 265 section; and F is the cell curvature correction factor, which is calculated according to 266 the method of Thain et al. (1983). The values of F ranged from 1.4-1.5 for palisade 267 cells and 1.16–1.4 for spongy cells. 268 269 The fraction of intercellular air space (f_{ias}) in leaf mesophyll, f_{ias} was estimated as: 270 271 $f_{\text{ias}} = 1 - \frac{\sum S_{\text{s}}}{t_{\text{mes}} W} (7)$ 272 273 where $t_{\rm mes}$ is mesophyll thickness. 274 275 All parameters were analysed at three different fields and at three different sections. 276 The weighted average was calculated based on tissue volume fractions according to 277 278 Tomás et al. (2013). 279 Determination of leaf area, leaf dry mass per unit area, and leaf sodium content 280 281 Leaf samples were washed three times with deionized water and dried at 75 °C to a 282 constant mass. Dry samples were ground and digested with 3:1 (v/v) HNO3 and 283 HClO₄. Na concentration was determined using inductively coupled plasma mass 284 spectrometry (Agilent 7500a, Agilent Technologies, CA, USA). 285

Quantitative photosynthetic limitation analysis

A quantitative limitation analysis was used to distribute the relative controls on Aamong stomatal limitation (S_L), mesophyll conductance limitation (MC_L) and biochemical limitation (B_L) (Grassi and Magnani 2005), as modified by Tomás et al. 2013). The relative changes in photosynthesis are expressed as:

294
$$\frac{dA}{A} = S_{\rm L} + MC_{\rm L} + B_{\rm L} = l_{\rm s} \frac{dg_{\rm sc}}{g_{\rm sc}} + l_{\rm mc} \frac{dg_{\rm m}}{g_{\rm m}} + l_{\rm b} \frac{dV_{\rm cmax}}{V_{\rm cmax}}$$
(8)

296
$$l_{\rm s} = \frac{g_{\rm tot}/g_{\rm s} \cdot \partial A / \partial C_{\rm c}}{g_{\rm tot} + \partial A / \partial C_{\rm c}} (9)$$

298
$$l_{\rm m} = \frac{g_{\rm tot}/g_{\rm m} \cdot \partial A / \partial C_{\rm c}}{g_{\rm tot} + \partial A / \partial C_{\rm c}} (10)$$

$$l_{\rm b} = \frac{g_{\rm tot}}{g_{\rm tot} + \partial A / \partial C_{\rm c}} (11)$$

where $l_{\rm m}$, $l_{\rm s}$ and $l_{\rm b}$ are the corresponding relative limitations due to $g_{\rm m}$, $g_{\rm s}$ and biochemical capacity (V_{cmax}), respectively; ($l_{\rm s} + l_{\rm m} + l_{\rm b} = 1$). The total CO₂ diffusion conductance, $g_{\rm tot}$, was given by:

306
$$g_{\text{tot}} = \frac{1}{1/g_{\text{sc}} + 1/g_{\text{m}}} (12)$$

308 $\partial A/\partial C_c$ was estimated as the slope of A/C_c curves with the range of C_c at 50-100 µmol 309 mol⁻¹ (Tomás et al. 2013). At least three A/C_c curves of each treatment were used, and 310 average values were calculated. 311

Relative changes in A, g_m , V_{cmax} and stomatal conductance to CO₂ (g_{sc}) due to the salt treatment were estimated as follows (Chen et al. 2015):

314

315
$$\frac{dA}{A} \approx \frac{A_{\text{max}}^{\text{ref}} \cdot A}{A_{\text{max}}^{\text{ref}}} (13)$$

316

317
$$\frac{dg_{\rm m}}{g_{\rm m}} \approx \frac{g_{\rm m}^{\rm ref} \cdot g_{\rm m}}{g_{\rm m}^{\rm ref}} (14)$$

318

319
$$\frac{dV_{\rm cmax}}{V_{\rm cmax}} \approx \frac{V_{\rm max}^{\rm ref} - V_{\rm cmax}}{V_{\rm cmax}^{\rm ref}} (15)$$

320

321
$$\frac{dg_{\rm sc}}{g_{\rm sc}} \approx \frac{g_{\rm sc}^{\rm ref} - g_{\rm sc}}{g_{\rm sc}^{\rm ref}} \quad (16)$$

322

where g_m^{ref} , g_{sc}^{ref} , A_{max}^{ref} and V_{cmax}^{ref} are the reference (maximum) values of g_m , g_{sc} , Aand V_{cmax} , respectively (Grassi and Magnani 2005). The reference values for A, g_{sc} , g_m and V_{cmax} correspond to NO₃⁻ and NH₄⁺ treatments without salt stress.

326

328 conductance were calculated according to a general formula:

329

330
$$g_{i} = \frac{1}{r_{i}} = \frac{r_{f,1} \cdot D_{w} \cdot p_{i}}{\Delta L_{i}} (17)$$

331

where g_i denotes the individual component conductance (r_i is the CO₂ liquid-phase 332 diffusion resistance), and $D_{\rm w}$, $p_{\rm i}$ (m³ m⁻³) and $\Delta L_{\rm i}$ (m) are the CO₂ aqueous-phase 333 diffusion coefficient (1.79 \times 10⁻⁹ m² s⁻¹ at 25 °C), effective porosity for the given 334 diffusion pathway component and the length of the diffusion path in the 335 corresponding diffusion component, respectively. The dimensionless factor $r_{f,1}$ 336 considers the reduction of diffusion in different cellular components due to the 337 presence of solutes and macromolecules; $r_{f,1}$ was taken as 0.3 for cytosol and stroma, 338 339 and 1.0 for cell walls (Niinemets and Reichstein 2003, Rondeau-Mouro et al. 2008). The effective porosity was 1.0 for stroma and cytosol. The p_i value of the cell wall 340 was estimated by a least-squares iterative analysis to obtain the best fit between the 341 342 modelled and measured g_m values (Tosens et al. 2012b, Tomás et al. 2013). The p_i value of the cell wall was set at 0.3 for the thinnest cell walls and 0.028 for the 343 thickest cell walls (Nobel 1991, Tosens et al. 2012b). In this study, the conductance of 344 the chloroplast envelope (g_{env}) and plasma membrane (g_{pl}) was set to 0.0035 m s⁻¹ 345 (Tosens et al. 2012a). 346

347

The total liquid-phase conductance consisted of two parallel pathways and wascalculated as follows (Tomás et al. 2013):

351
$$g_{\text{liq}} = \frac{S_{\text{c}}}{(r_{\text{cw}} + r_{\text{pl}} + r_{\text{cel},1})} + \frac{S_{\text{m}} - S_{\text{c}}}{(r_{\text{cw}} + r_{\text{pl}} + r_{\text{cel},2})}$$
(18)

352

where r_{cw} , r_{pl} , $r_{cel,1}$, and $r_{cel,2}$ are the resistances of cell wall, plasma membrane, cell wall parts with chloroplasts and the interchloroplastial areas, respectively (Tomás et al. 2013). The $r_{cel,1}$ and $r_{cel,2}$ were calculated as follows:

356

357
$$g_{\text{cel},1} = \frac{1}{r_{\text{cyt},1} + r_{\text{env}} + r_{\text{st},1}}$$
(19)

358

359
$$g_{\text{cel},2} = \frac{1}{r_{\text{cyt},2} + r_{\text{env}} + r_{\text{st},2}}$$
(20)

360

where $r_{st,1}$ and $r_{st,2}$ are the stromal resistance perpendicular and parallel to the cell walls, respectively. The $r_{cyt,1}$ value is defined as the CO₂ resistance through the plasmalemma inner surface to the outer surface of chloroplasts, and $r_{cyt,2}$ as the resistance from interchloroplastic cell wall portions to the outer surface of chloroplasts (Tomás et al. 2013). These equations give g_m in m s⁻¹. The conversion to molar units is given as follows:

367

368 $g_{\rm m} \,[{\rm mol} \,{\rm m}^{-2} \,{\rm s}^{-1}] = g_{\rm m} \,[{\rm m} \,{\rm s}^{-1}] \,44.6 \,[273.16/(273.16+T)(P/101325)],$ where *T* is leaf 369 temperature in °C and *P* is air pressure in Pa.

371 *Quantitative analyses of anatomical limitations of*
$$g_m$$

The quantitative contributions of different anatomical traits to g_m were separated according to Tosens et al. (2012b) and Tomás et al. (2013). The share of g_m in the gas phase was calculated as follows:

376

$$l_{ias} = \frac{g_{m}}{g_{ias}} (21)$$

378

The limitations of g_m by different liquid-phase components (l_i , where i stands for a diffusion pathway component, including cell wall, cytosol, chloroplast stroma, chloroplast envelope and plasmalemma) were calculated as follows:

382

$$l_{\rm i} = \frac{g_{\rm m}}{g_{\rm i} \frac{S_{\rm m}}{S}} (22)$$

384

where g_i is the corresponding CO₂ conductance of the diffusion pathway.

386

387 Estimation of g_m by a curve-fitting method

388

Estimation of g_m was performed by the method of Ethier and Livingston (2004). The g_m estimation was performed with the A/C_i curves with a non-rectangular hyperbola version of the Farquhar's biochemical model for leaf photosynthesis (Farquhar et al. 1980). The g_m value from the fitting of A/C_i and measured from combined gas exchange (g_m) and chlorophyll fluorescence measurements (g_m -gas exchange) were 18 significantly correlated ($r^2 = 0.79$, P < 0.05; Figure S1).

395

396 *Statistical analyses*

397

Statistical analyses were conducted using the SPSS software (version 22.0). Before 398 analyses of variance (ANOVAs), the data were checked for normality. The differences 399 between mean values were compared by Duncan's tests at a significance level of P <400 0.05. Three-way analyses of variance were performed to examine the effects of sex, N 401 402 forms and salt levels. Structural equation modeling was used to evaluate the indirect and direct relationships between leaf structure, biomass allocation, chloroplast 403 exposed surface to leaf area ratio (S_c/S) , mesophyll cell area per transverse section 404 405 width (S/W), CO₂ mesophyll conductance (g_m) and photosynthesis (A). Before the construction of the structure equation modeling, we conducted a principal component 406 analysis (PCA) to create the multivariate functional index due to the correlations 407 408 among the factors within each group. The structural equation modeling analyses were performed using the R package "lavaan" v. 0.6-1 (Rosseel 2012). 409

410

```
411 Results
```

412

413 Morphological and anatomical traits of leaves

414

415 Salt stress significantly decreased leaf A, g_m , g_s , leaf area, leaf biomass, F_v/F_m ,

416	chlorophyll concentration, the rate of photosynthetic electron transport $(J, \text{ Eq. } 2)$ and
417	$V_{\rm cmax}$ in females and males grown under both N forms (except for $F_{\rm v}/F_{\rm m}$ under NH4 ⁺
418	supply and leaf biomass under both N forms in males). The salt effects were greater in
419	females than in males (Figure 1; Table 1; Table S2). Salt stress increased leaf dry mass
420	per unit area (LMA) and leaf thickness (Figure 1; Table 1). Compared with control
421	conditions, salt stress increased LMA by 37% and 59% in females, and by 21% and 16%
422	in males under $\mathrm{NO_3}^-$ and $\mathrm{NH_4}^+$ supply, respectively. Leaf thickness increased by 59%
423	and 56% in females, and by 26% and 19% in males by salt stress under $\mathrm{NO_3^-}$ and
424	$\mathrm{NH_4^+}$ supply, respectively (Table 2). The leaf construction cost with salt stress
425	exposure was slightly higher in males than in females under $\mathrm{NH_4^+}$ supply, but it was
426	similar in both sexes under NO ₃ ⁻ supply (Table 1). The leaf dark respiration rate (R_d)
427	increased by salt stress, and the effect of salt stress on R_d was greater in females than
428	in males under both N forms. Salt stress induced R_d more in females under NO ₃ ⁻
429	supply than under NH_4^+ supply; there was no significant difference in R_d in males
430	between the two N forms (Table S2). The SRL value in females was greater than that
431	in males, and the increase in SRL was more significant under NO_3^- supply in males
432	(Table 1). The contrary was true for root length density (RLD) under salt stress. The
433	root biomass and the ratio of root to shoot were higher in females than in males with
434	salt stress under both N forms (Table 1; Table S2).

The density of both mesophyll palisade and spongy tissue cells was higher in femalesthan in males exposed to salt stress under both N forms (Table S2). The contrary was

438	true for the thickness of palisade and spongy tissues. Palisade and spongy cells were
439	denser in NH_4^+ -fed females than in those supplied by NO_3^- under salt stress, while a
440	higher density of palisade and spongy cells was found in males with $\mathrm{NO_3^-}$ supply
441	under salt stress (Table S2). Leaf thickness, f_{ias} , S_m/S , S_c/S , and chloroplast density and
442	length were higher in males than in females with salt stress under both N forms (Table
443	2). NH_4^+ -fed males with salt stress had lower <i>S/W</i> and chloroplast density but higher
444	f_{ias} under NO ₃ ⁻ supply (Table 2). In contrast, there was no significant difference in leaf
445	thickness, S_m/S , S/W , or chloroplast density and length in females with salt stress
446	under either N form, but S_c/S and f_{ias} were lower under NH ₄ ⁺ supply (Table 2). T_{cw} ,
447	$T_{\rm chl}$, $l_{\rm cyt,1}$ and $l_{\rm cyt,2}$ in salt-stressed plants were higher under NO ₃ ⁻ and NH ₄ ⁺ supply in
448	both sexes compared with control plants (Figure 1; Table 2). In males, salt stress
449	increased $T_{\rm cw}$, $T_{\rm chl}$, $l_{\rm cyt,1}$ and $l_{\rm cyt,2}$ by 23%, 15%, 43% and 20%, respectively, under
450	$\mathrm{NO_{3}^{-}}$ supply, and by 15%, 24%, 66% and 28%, respectively, under $\mathrm{NH_{4}^{+}}$ supply
451	(Table 2). In contrast, in females, T_{cw} , T_{chl} , $l_{cyt,1}$, and $l_{cyt,2}$ increased by 19%, 34%, 62%
452	and 37%, respectively, under NO_3^- supply, and by 29%, 40%, 32% and 39%,
453	respectively, under NH4 ⁺ supply in salt-stressed plants (Table 2).

455 Correlations of g_m with physiological characteristics of leaves

456

The net photosynthesis rate (A) exhibited a significant positive correlation with g_m and g_s in both sexes under both NO₃⁻ and NH₄⁺ supply (Figure 2a, b). Under both N forms, A at a given g_s and g_m was higher in males than in females irrespective of salt stress (Figure 2, P < 0.05, Duncan's test), reflecting a greater photosynthetic capacity in males. With an increasing Na⁺ concentration in leaves, g_m decreased significantly in both sexes, especially in males under NH₄⁺ supply (Figure 2c). Both g_m and the CO₂ drawdown from intercellular air space to chloroplasts (C_i - C_c) decreased under salt stress, but the reductions were greater in females than in males, especially under NH₄⁺ supply (Figure 2d).

466

467 *Correlations of* g_m *with anatomical traits of leaves*

468

Strong positive correlations between g_m and f_{ias} were observed in females and males 469 under all treatments (P < 0.001, Duncan's test) (Figure 3a). In males, f_{ias} decreased by 470 471 salt stress more under NO_3^- than under NH_4^+ supply, whereas lower f_{ias} was observed under NH_4^+ than under NO_3^- supply (Figure 3a). According to multiple regression 472 analyses, g_m was positively associated with S_m/S and S_c/S in all treatments in both 473 474 sexes (P < 0.001; Duncan's test, Figure 3b, c). At given S_m/S , g_m was greater in males 475 than in females, but a similar relationship between g_m and S_c/S was observed in both sexes (Figure 3b, c). A strong negative relationship was observed between g_m and T_{cw} 476 in both sexes under both N forms (P < 0.001; Duncan's test, Figure 3d). The slopes of 477 $g_{\rm m}$ vs. $T_{\rm cw}$ were similar in males and females, but because salt stress led to higher $T_{\rm cw}$ 478 in females than in males (see above), the g_m vs. T_{cw} line was shifted towards higher 479 $T_{\rm cw}$ values along the common slope (Figure 3d). S_c/S and T_{cw} better explained the 480 sexually differential g_m relative to f_{ias} and S_m/S . In contrast, f_{ias} and S_m/S explained the 481

482 differences among treatments for each sex.

483

484 *Limitation of photosynthesis under salt stress*

485

According to the quantitative limitation analysis, salt stress changed the share of 486 mesophyll, stomatal and biochemical limitations in both sexes under NH₄⁺ and NO₃⁻ 487 supply (Figure 4a). In particular, biochemical and mesophyll diffusion limitations 488 (Eqs 10-11) restricted photosynthetic capacity more than stomatal limitations (Eq. 9) 489 490 under salt stress (Figure 4a). Mesophyll diffusion limitations due to salt stress were higher in females than in males under both N forms, and the extent of inhibition due 491 to salt stress was greater under NH_4^+ than under NO_3^- supply (Figure 4a). Salt stress 492 493 strongly increased biochemical limitations in females under both N forms, but the extent of such limitations was more significant in males under NO₃⁻ than under NH₄⁺ 494 supply. Stomatal limitations were higher under NO_3^- than under NH_4^+ supply, 495 496 especially in females (Figure 4a, P < 0.05, Duncan's test). Positive relationships were observed between leaf Na and S_L , and Na and MC_L in both sexes (Figure 4b). 497

498

499 *Limitations of g_m resulting from diffusion pathway components*

500

In all cases, CO₂ liquid phase diffusion represented a higher proportion of the total diffusion pathway limitation than did gas phase diffusion (Figure 5a-d). For the liquid phase, decreases in the absolute values of CO₂ diffusion conductance due to salt stress were greater in females than in males under both N forms (Figure 5d). Moreover, the salt stress-dependent increase in the absolute liquid phase conductance was lower under NH_4^+ than under NO_3^- supply in females but not in males (Figure 5d).

507

The analysis of different liquid phase components indicated that the chloroplast 508 stroma and cytoplasm were the most limiting components in females and males 509 (Figure 6a, b). In salt-stressed females, the share of overall limitation due to 510 chloroplast stroma was reduced under NH_4^+ but unaffected under NO_3^- supply. In 511 512 contrast, salt stress increased the CO₂ diffusion limitation due to cytoplasm in both sexes. Salt stress did not affect chloroplast stromal limitation under either N form in 513 males (Figure 6a, b). The limitation of liquid phase conductance due to cell walls was 514 515 not affected by salt stress under either N supply in either sex. However, salt stress led to 43% and 109% increases in the relative chloroplast envelope limitation under NO_3^- 516 and NH₄⁺ supply, respectively, in females, while the limitation of the chloroplast 517 envelope did not change by salt stress in males under NH₄⁺ supply (Figure 6a, b). 518

519

The absolute values of diffusion conductance differed among sexes and treatments (Figure 6c, d). Salt stress decreased g_{cyt1} , g_{cyt2} and g_{st1} in both sexes under NO₃⁻ and NH₄⁺ supply, and the effects of salt stress on cytoplasm conductance were greater in males than in females (Figure 6c, d; Figure S2). The g_{st2} value of females also decreased by salt stress under NH₄⁺ supply, but there was no significant difference in males under either N form (Figure 6c, d; Figure S2). Compared with control

526	conditions, salt stress had higher g_{st1} and g_{cw} , and lower g_{cyt1} in females under NO ₃ ⁻
527	than under NH ₄ ⁺ supply, whereas no significant differences were found in g_{st2} and g_{cyt2}
528	values between the two N forms (Figure S2). In males, greater g_{cw} and g_{st2} , and lower
529	g_{cyt1} and g_{cyt2} induced by salt stress were found under NH_4^+ supply than under NO_3^-
530	supply (Figure 6c, d; Figure S2). There was no significant difference in g_{st1} between
531	the two N forms in males.

- 533 Structural equation modelling
- 534

As shown in Figure 7, structural equation modelling suggested that leaf S/W and g_m 535 had direct effects on leaf photosynthesis ($r^2 = -0.49$ and 0.51, respectively). The leaf 536 photosynthesis was positively correlated with leaf g_m but negatively correlated with 537 leaf S/W. Leaf S_c/S had a direct positive effect on g_m ($r^2 = 0.41$), while leaf S/W had a 538 direct negative effect on $g_{\rm m}$ ($r^2 = -0.60$). Leaf structure had a direct positive effect on 539 biomass allocation ($r^2 = 0.47$) and S/W ($r^2 = 0.34$), but a direct negative effect on S_c/S 540 $(r^2 = -0.30)$. By contrast, biomass allocation had a direct positive effect on S_c/S $(r^2 = -0.30)$. 541 0.36). 542

543

544 Schematic modes showing the sexual difference in g_m

545

546 As shown in Figure 8, under salt stress, females had less chloroplast and more 547 mesophyll spongy cells; the contrary was true for males under both N forms. The CO₂

548	stroma (g_{st}) and cytoplasm conductance (g_{cyt}) were the lowest among the CO ₂ liquid
549	conductance levels. The CO_2 cell wall conductance of females was lower with $\mathrm{NH_4^+}$
550	supply, but lower with NO_3^- supply when compared to males under salt stress. The
551	g_{st1} and g_{cyt1} values of males were higher than those of females under both N forms
552	and salt stress. Under salt stress, $g_{\rm st2}$ was higher in females than in males with $\rm NH_4^+$
553	supply, but it showed no significant difference between the sexes under NO_3^- supply.
554	NH_4^+ -fed females had greater g_{cyt1} but lower g_{st1} and g_{cw} , and similar g_{st2} and g_{cyt2} than
555	those under NO ₃ ⁻ supply, while males had higher g_{cyt1} and g_{cyt2} , lower g_{cw} and g_{st2} ,
556	and similar g_{st1} under NO ₃ ⁻ supply than under NH ₄ ⁺ supply under salt stress (Figure
557	8).

559 Discussion

The present study clearly demonstrated that salt stress imposes sex-specific restraints 561 on CO₂ assimilation, mainly deriving from the restraint of g_m relative to g_s under 562 NO₃⁻ and NH₄⁺ supply. Generally, stomatal closure is the first response to salt stress 563 in plants (Wang et al. 2018). Salt stress could disturb stomatal function, leading to a 564 decreased photosynthetic capacity (Tavakkoli et al. 2011, Pérez-López et al. 2012, 565 Chen et al. 2015). Improving stomatal regulation has been regarded as the most 566 effective approach to alleviate salt stress in plants (Chen et al. 2015, Qiu and Katul 567 2020). In this study, both g_m and g_s were positively correlated with A in females and 568 males under both N forms (Figure 2). The relationship of g_m and g_s was stronger in 569

females than in males (Figure S3). However, we found that the g_m , g_s and Jsignificantly decreased by salt stress under both N forms, especially in females (Table 1; Table S2).

The variable g_m was the main limiting factor for the sexual difference in A under salt 573 stress. This result was a little inconsistent with a previous study on Ziziphus 574 spina-christi trees suggesting that g_m plays a critical role in controlling A only under 575 severe salinity stress (Zait et al. 2019). This could be explained by the different way 576 of calculating l_s and l_m , as well as by the plant species. In the study by Zait et al. 577 (2019), the authors investigated drought-tolerant Ziziphus spina-christi trees, which 578 exhibited strong tolerance to salt stress. The concentration of NaCl used in our study 579 was moderate for males but not for females. In this study, the net photosynthetic rate 580 581 A and stomatal conductance g_s decreased by salt stress more significantly in *Populus* cathayana females than in males. Additionally, gs was dynamic and changed in 582 response to environmental conditions rapidly or even faster than g_m (Flexas et al. 583 2008). These results suggested that the photosynthetic limitation from g_m might be 584 higher than that from g_s under our experimental conditions. 585

586

Salt stress affects those morphological and anatomical traits of leaves that are associated with CO₂ diffusion into the leaves and leaf photosynthesis (Wankhade et al. 2013, Wang et al. 2018). A higher *LMA* value is correlated with a greater dry mass investment and it has a negative effect on g_m (Tomás et al. 2013, Onoda et al. 2017). Consistently, females with higher *LMA* had lower g_m under salt stress (Table 1). It is

noteworthy that males with higher A and g_m had higher LMA than females, which 592 suggested that it was not possible to precisely determine g_m and A only from leaf LMA 593 (Figure 7), because of the effects of the chemical composition of leaves (John et al. 594 2017). The S/W value included the total cell area of palisade and spongy tissues per 595 transverse section width, representing the leaf structural investment per area, which 596 would be a more advantageous and convenient trade-off between the leaf structure 597 and photosynthesis (Hu et al. 2020). The results of the structural equation modelling 598 suggested that S/W plays a critical role in determining g_m and A ($r^2 = -0.60$ for g_m and 599 600 -0.49 for A) (Figure 7). A lower chloroplast density and a greater mesophyll spongy density in females would reduce light energy capture and CO₂ diffusion conductance 601 in leaves, especially under NH_4^+ supply (Table 2). 602

603

Cell wall thickness and chloroplast distribution are critical fort setting g_m limitation in 604 plants (Terashima et al. 2011). Consistently, S_c/S and T_{cw} were those anatomical 605 variables that best explain differences in g_m between sexes (Figures 3, 7, 8). A greater 606 increase in chloroplast numbers observed in males compared to females facilitated an 607 increase in S_c/S (Figure 8). Higher S_c/S and a lower cell wall thickness led to an 608 increased CO₂ diffusion conductance into male leaves, which was consistent with 609 previous studies (Peguero-Pina et al. 2017, Wang et al. 2018). Indeed, the 610 quantification of g_m limitation showed that g_{cyt} was higher in females than in males 611 during salt stress under both types of N supplies (Figure 6). The proportion of g_{cyt} in 612 the CO₂ diffusion conductance increases along with a reduced contact between 613

chloroplasts and cell surfaces (Lu et al. 2016). Modifications in the chloroplast shape and structure affect the distance of cytosolic CO₂ diffusion under abiotic stress (Shu et al. 2012). Changes in the shape of female chloroplasts caused by salt stress probably decreased the g_{cyt} value and, thus. g_m as well.

618

Generally, the distance has little effect on CO₂ diffusion when the cellular stromal 619 distance between the plasma membrane and chloroplast envelope is relatively short. 620 However, intracellular CA could convert CO₂ into HCO₃⁻, having the highest activity 621 622 in the stroma and, thus, affecting g_m (Evans et al. 2009). The effects of N forms on g_{st} and g_{cyt} were sex-dependent under salt stress. NH₄⁺-fed females had greater g_{cyt1} but 623 lower g_{cw} and g_{st1} than those under NO₃⁻ supply, while males had higher g_{cw} and 624 625 lower g_{st2} under NH₄⁺ than under NO₃⁻ supply (Figures 6, 8; Figure S2). Additionally, nitrogen availability and forms have been found to affect CA activities under salt 626 stress (Siddiqui et al. 2010, Nawaz et al. 2020). Therefore, CA may increase its effect 627 on gm inside chloroplasts. In addition, increasing evidence suggests that aquaporins 628 are capable of transporting CO₂ in plants and the aquaporin activity is associated with 629 g_m in leaves (Maurel et al. 2008, Heckwolf et al. 2011). Some studies have suggested 630 that salt stress or nitrogen availability increase aquaporin activities (Qi et al. 2009), 631 which indicates that the variation in aquaporin activities under salt stress and N 632 availability might partially affect $g_{\rm m}$. 633

634

635 The effects of N forms on g_m and A largely depend on salt stress tolerance and the

energy allocation of plants. N forms affect matter distribution and carbohydrate 636 consumption in plants (Guo et al. 2007, Ashraf et al. 2018). A greater investment in 637 the leaf area and cell wall thickness results in a lower allocation of resources to leaf 638 photosynthesis in females. Net photosynthesis could be reduced not only by a greater 639 energy investment in structures but also by higher maintenance costs, including the 640 effects of abiotic stresses (Guo et al. 2007). Females show a higher respiration rate 641 than males under drought stress in Populus cathavana (Han et al. 2013). The higher 642 dark respiration rate in P. cathavana females under salt stress found in the present 643 study was probably associated with the leaf photosynthesis (Table S2). NO₃⁻ 644 assimilation in plants requires more energy than NH₄⁺ assimilation, while carbon 645 losses through leaf and root respiration are higher under NH₄⁺ than under NO₃⁻ supply. 646 647 Whether or how N assimilation in plants affects photosynthesis under salt stress was not clear. In the future, it will be important to clarify the sexually different leaf 648 photosynthesis under salt stress with different N form supplies based on the 649 650 relationship between photosynthesis and respiration consumption.

651

Importantly, the sex- and N form-specific investment in the root system architecture largely reflects energy requirements for foliage construction, thereby, affecting g_m and photosynthesis. In this study, the biomass allocation did not directly explain leaf A, whereas the biomass allocation had indirect effects on leaf A through leaf structural traits (Figure 7). NH₄⁺-fed males with a higher root biomass had high root construction costs, while NO₃⁻-fed males with a higher leaf biomass had high energy cost from NO_3^- assimilation without salt stress. Such energy trade-offs between biomass and *A* in males led to similar g_m and photosynthesis under both N forms. Females produce thinner roots than males and they intensively facilitate the exploration of thesurrounding soil and Na⁺ uptake (Xia et al. 2020). Certainly, the larger root system and ion uptake enhanced the energy consumption of females exposed to salt stress, especially under NH₄⁺ supply.

664

665 Conclusions

666

This study suggested that leaf g_m relative to g_s under salt stress was the main restraint 667 on leaf A under NO_3^- and NH_4^+ supplies. Among leaf structural components, S_c/S and 668 669 S/W were critical factors affecting g_m and A (Figure 7). Salt stress increased S/W, and reduced intercellular air space and S_c/S, resulting in an increased length of 670 cytoplasmic and stromal paths, and inhibition of g_m and A in females (Figure 8). 671 672 Conversely, males had a better tradeoff between leaf structure and photosynthesis (more chloroplasts and fewer spongy cells), and they have a good ability to regulate 673 leaf CO₂ diffusion and light capture into the leaf, thereby alleviating g_m and A 674 decreases under salt stress and both N forms (Figure 8). The low CO₂ diffusion 675 conductance in NH₄⁺-fed females was mainly due to g_{st1} and g_{cw} , while NO₃⁻-fed 676 males had a higher cytoplasm conductance (Figure 8). Moreover, biomass allocation 677 in both sexes indirectly affected leaf structural traits and A under both N forms. This 678 study will not only help us to predict potential climate change impacts on dioecious P. 679

cathayana populations, but also to predict the photosynthetic behavior of tree species
 with different N-source preferences and spatiotemporal changes in N assimilation at
 rising atmospheric CO₂.

683

Acknowledgements This work was supported by the Natural Science Foundation of
China (31800507) and the Talent Program of the Hangzhou Normal University
(2016QDL020).

687

Author contributions Miao Liu had the main responsibility for data collection, analysis and writing, Xiucheng Liu and Xuhua Du contributed to data analysis, Helena Korpelainen and Ülo Niinemets contributed to the interpretation of data and manuscript preparation, and Chunyang Li (the corresponding author) had the overall responsibility for the experimental design and project management.

693

694 **Conflict of interest** The authors declare that they have no conflict of interest.

695 **References**

696	Ashraf M,	Shahzad Sl	M, Imtiaz	Μ,	Rizwan	MS,	Arif MS,	Kausar R	(2018)) Nitrogen
-----	-----------	------------	-----------	----	--------	-----	----------	----------	--------	------------

- 697 nutrition and adaptation of glycophytes to saline environment: a review. Arch
 698 Agron Soil Sci 64:1181-1206.
- Berghuijs HN, Yin X, Ho QT, Driever SM, Retta MA, Nicolaï BM, Struik PC (2016)
- Mesophyll conductance and reaction-diffusion models for CO₂ transport in C₃
 leaves; needs, opportunities and challenges. Plant Sci 252:62-75.
- 702 Bernacchi CJ, Singsaas EL, Pimentel C, Portis Jr AR, Long SP (2001) Improved
- temperature response functions for models of Rubisco-limited photosynthesis.
- 704 Plant Cell Environ 24:253-259.
- Bernacchi CJ, Portis AR, Nakano H, Von Caemmerer S, Long SP (2002) Temperature
 response of mesophyll conductance. Implications for the determination of Rubisco
 enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol
- 708 130:1992-1998.
- Bi J, Liu X, Liu S, Wang Y, Liu M (2020) Microstructural and physiological
 responses to cadmium stress under different nitrogen forms in two contrasting *Populus* clones. Environ Exp Bot 169:103897.
- Brooks A, Farquhar GD (1985) Effect of temperature on the CO₂/O₂ specificity of
 ribulose-1, 5-bisphosphate carboxylase/oxygenase and the rate of respiration in
 the light. Planta 165:397-406.
- 715 Cano FJ, Sánchez-Gómez D, Rodrí guez Calcerrada J, Warren CR, Gil L, Aranda I
- 716 (2013) Effects of drought on mesophyll conductance and photosynthetic

717 lin	nitations at	different	tree canopy	layers.	Plant	Cell	Environ	36:1961	-1980.
---------	--------------	-----------	-------------	---------	-------	------	---------	---------	--------

- 718 Chen J, Duan B, Xu G, Korpelainen H, Niinemets Ü, Li C (2016) Sexual competition
- affects biomass partitioning, carbon–nutrient balance, Cd allocation and
 ultrastructure of *Populus cathayana* females and males exposed to Cd stress. Tree
- 721 Physiol 36:1353-1368.
- Chen L, Han Y, Jiang H, Korpelainen H, Li C (2011) Nitrogen nutrient status induces
 sexual differences in responses to cadmium in *Populus yunnanensis*. J Exp Bot
 62:5037-5050.
- Chen TW, Kahlen K, Stützel H (2015) Disentangling the contributions of osmotic and
 ionic effects of salinity on stomatal, mesophyll, biochemical and light limitations
 to photosynthesis. Plant Cell Environ 38:1528-1542.
- Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO₂ transfer
- conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model.
- 730 Plant Cell Environ 27:137-153.
- Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO₂
 diffusion pathway inside leaves. J Exp Bot 60:2235-2248.
- 733 Farquhar GD, von Caemmerer SV, Berry JA (1980) A biochemical model of
- photosynthetic CO_2 assimilation in leaves of C_3 species. Planta 149:78-90.
- 735 Flexas J, Díaz-Espejo A, Conesa MA, Coopman R, Douthe C, Gago J, Gallé A,
- Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü (2016) Mesophyll
- 737 conductance to CO_2 and Rubisco as targets for improving intrinsic water use
- efficiency in C₃ plants. Plant Cell Environ 39:965-982.

739	Flexas J, Ribas-Carbo MI, Diaz-Espejo AN, GalmES J, Medrano H (2008) Mesophyll
740	conductance to CO ₂ : current knowledge and future prospects. Plant Cell Environ
741	31:602-621.
742	Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield

- of photosynthetic electron transport and quenching of chlorophyll fluorescence.
 BBA-Gen Subjects 990:87-92.
- Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in
 plants: unraveling the signaling networks. Front Plant Sci 5:151.
- Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical
 limitations to photosynthesis as affected by drought and leaf ontogeny in ash and
 oak trees. Plant Cell Environ 28:834-849.
- Guo S, Zhou Y, Shen Q, Zhang F (2007) Effect of ammonium and nitrate nutrition on
- some physiological processes in higher plants-growth, photosynthesis,
 photorespiration, and water relations. Plant Biol 9:21-29.
- Han Y, Wang Y, Jiang H, Wang M, Korpelainen H, Li C (2013) Reciprocal grafting
 separates the roles of the root and shoot in sex-related drought responses in *Populus cathayana* males and females. Plant Cell Environ 36:356-364.
- Harley PC, Thomas RB, Reynolds JF, Strain BR (1992) Modelling photosynthesis of
 cotton grown in elevated CO₂. Plant Cell Environ 15:271-282.
- 758 Heckwolf M, Pater D, Hanson DT, Kaldenhoff R (2011) The Arabidopsis thaliana
- aquaporin AtPIP1; 2 is a physiologically relevant CO₂ transport facilitator. Plant J
- 760 67:795-804.

761	Henry DA, Simpson RJ, Macmillan RH (2000) Seasonal changes and the effect of
762	temperature and leaf moisture content on intrinsic shear strength of leaves of
763	pasture grasses. Aust J Agr Res 51:823-831.
764	Hu W, Lu Z, Meng F, Li X, Cong R, Ren T, Sharkey TD, Lu J (2020) The reduction in
765	leaf area precedes that in photosynthesis under potassium deficiency: the
766	importance of leaf anatomy. New Phytol. https://doi.org/10.1111/nph.16644.
767	John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L (2017) The anatomical
768	and compositional basis of leaf mass per area. Ecol Lett 20:412-425.
769	Liu M, Bi J, Liu X, Kang J, Korpelainen H, Niinemets Ü, Li C (2020a)
770	Microstructural and physiological responses to cadmium stress under different
771	nitrogen levels in Populus cathayana females and males. Tree Physiol 40:30-45.
772	Liu M, Liu X, Kang J, Korpelainen H, Li C (2020b) Are males and females of
773	Populus cathayana differentially sensitive to Cd stress? J Hazard Mater
774	393:122411.
775	Liu M, Wang Y, Liu X, Korpelainen H, Li C (2021) Intra-and intersexual interactions
776	shape microbial community dynamics in the rhizosphere of Populus cathayana
777	females and males exposed to excess Zn. J Hazard Mater 402:123783.
778	Lu Z, Lu J, Pan Y, Lu P, Li X, Cong R, Ren T (2016) Anatomical variation of
779	mesophyll conductance under potassium deficiency has a vital role in determining

- 780leaf photosynthesis. Plant Cell Environ 39:2428-2439.
- 781 Martins SC, Galmes J, Cavatte PC, Pereira LF, Ventrella MC, Damatta FM (2014)
- 782 Understanding the low photosynthetic rates of sun and shade coffee leaves:

- bridging the gap on the relative roles of hydraulic, diffusive and biochemicalconstraints to photosynthesis. Plos One 9:e95571.
- Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane
 channels with multiple integrated functions. Annu Rev Plant Biol 59:595-624.
- 787 Nawaz F, Shehzad MA, Majeed S, Ahmad KS, Aqib M, Usmani MM, Shabbir RN
- (2020) Role of mineral nutrition in improving drought and salinity tolerance infield crops. Agronomic Crops 129-147.
- Niinemets U (2007) Photosynthesis and resource distribution through plant canopies.
- 791 Plant Cell Environ 30:1052-1071.
- Niinemets Ü (1999) Research review. Components of leaf dry mass per areathickness and density-alter leaf photosynthetic capacity in reverse directions in
 woody plants. New Phytol 144:35-47.
- 795 Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009b) Role of
- mesophyll diffusion conductance in constraining potential photosynthetic
 productivity in the field. J Exp Bot 60:2249-2270.
- Niinemets Ü, Keenan TF (2014) Photosynthetic responses to stress in Mediterranean
 evergreens: mechanisms and models. Environ Exp Bot 103:24-41.
- Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through
- stomata: a sensitivity analysis. J Geophys Res-Atmos 108:4211.
- Niinemets Ü, Wright IJ, Evans JR (2009a) Leaf mesophyll diffusion conductance in
- 803 35 Australian sclerophylls covering a broad range of foliage structural and
- physiological variation. J Exp Bot 60:2433-2449.

- Nobel PS (1991) Physicochemical and environmental plant physiology, 4th edn. San
 Diego, CA: Academic Press.
- 807 Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H,
- 808Tosens T, Westoby M (2017) Physiological and structural tradeoffs underlying the
- leaf economics spectrum. New Phytol 214:1447-1463.
- Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Moore TA (2015)
- Redesigning photosynthesis to sustainably meet global food and bioenergy
 demand. P Natl Acad Sci USA 112:8529-8536.
- 813 Peguero-Pina JJ, Sisó S, Flexas J, Galmés J, García-Nogales A, Niinemets Ü,
- Sancho-Knapik D, Saz MÁ, Gil-Pelegrín E (2017) Cell -level anatomical
 characteristics explain high mesophyll conductance and photosynthetic capacity in *sclerophyllous Mediterranean* oaks. New Phytol 214:585-596.
- 817 Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Munoz-Rueda A (2012)
- 818 Elevated CO₂ reduces stomatal and metabolic limitations on photosynthesis

caused by salinity in *Hordeum vulgare*. Photosynth Res 111:269-283.

- Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic
 connections from available data? J Exp Bot 62:869-882.
- 822 Praxedes SC, De Lacerda CF, DaMatta FM, Prisco JT, Gomes-Filho E (2010) Salt
- tolerance is associated with differences in ion accumulation, biomass allocation
 and photosynthesis in cowpea cultivars. J Agron Crop Sci 196:193-204.
- Qi CH, Chen M, Song J, Wang BS (2009) Increase in aquaporin activity is involved in
- leaf succulence of the euhalophyte Suaeda salsa, under salinity. Plant Sci

827 176:200-205.

- Qiu R, Katul GG (2020) Maximizing leaf carbon gain in varying saline conditions: An
 optimization model with dynamic mesophyll conductance. Plant J 101:543-554.
- Ren T, Weraduwage SM, Sharkey TD (2019) Prospects for enhancing leaf
 photosynthetic capacity by manipulating mesophyll cell morphology. J Exp Bot
 70:1153-1165.
- Rondeau-Mouro C, Defer D, Leboeuf E, Lahaye M (2008) Assessment of cell wall
 porosity in *Arabidopsis thaliana* by NMR spectroscopy. Inter J Biol Macromol
 42:83-92.
- Rosseel Y (2012) Lavaan: An R package for structural equation modeling and more.
 Version 0.5-12 (BETA). J Stat Softw 48:1-36.
- 838 Siddiqui MH, Mohammad F, Khan MN, Al-Whaibi MH, Bahkali AH (2010) Nitrogen
- in relation to photosynthetic capacity and accumulation of osmoprotectant and
- 840 nutrients in Brassica genotypes grown under salt stress. Agr Sci China 9:671-680.
- Scoffoni C, Sack L, Ort D (2017) The causes and consequences of leaf hydraulic
 decline with dehydration. J Exp Bot 68:4479-4496.
- 843 Shu S, Yuan LY, Guo SR, Sun J, Liu CJ (2012) Effects of exogenous spermidine on
- photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber
 seedlings exposed to salinity. Afr J Biotechnol 11:6064-6674.
- 846 Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive
- effects of Na⁺ and Cl⁻ ions on barley growth under salinity stress. J Exp Bot
 62:2189-2203.

- Terashima I, Hanba YT, Tholen D, Niinemets Ü (2011) Leaf functional anatomy in
 relation to photosynthesis. Plant Physiol 155:108-116.
- Thain JF (1983) Curvature correlation factors in the measurements of cell surface
 areas in plant tissues. J Exp Bot 34:87-94.
- 853 Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Niinemets Ü
- (2013) Importance of leaf anatomy in determining mesophyll diffusion
 conductance to CO₂ across species: quantitative limitations and scaling up by
 models. J Exp Bot 64:2269-2281.
- Tosens T, Nishida K, Gago J, Coopman RE, Cabrera HM, Carriquí M, Talts E (2016)
- The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO₂ diffusion as a key trait. New Phytol 209:1576-1590.
- Tosens T, Niinemets Ü, Vislap V, Eichelmann H, Castro-Diez P (2012a)
 Developmental changes in mesophyll diffusion conductance and photosynthetic
 capacity under different light and water availabilities in *Populus tremula*: how
 structure constrains function. Plant Cell Environ 35:839-856.
- 864 Tosens T, Niinemets Ü, Westoby M, Wright IJ (2012b) Anatomical basis of variation
- in mesophyll resistance in eastern Australian sclerophylls: news of a long and
 winding path. J Exp Bot 63:5105-5119.
- 867 Veromann-Jürgenson L-L, Tosens T, Brodribb TJ, Niinemets Ü (2020) Pivotal role of
- 868 mesophyll conductance in shaping photosynthetic performance across 67 869 structurally diverse gymnosperm species. Inter J Plant Sci 181:116-128.
- 870 Wankhade SD, Cornejo MJ, Mateu-Andrés I, Sanz A (2013) Morpho-physiological

871	variations in response to NaCl stress during vegetative and reproductive
872	development of rice. Acta Physiol Plant 35:323-333.
873	Wang X, Du T, Huang J, Peng S, Xiong D (2018) Leaf hydraulic vulnerability triggers
874	the decline in stomatal and mesophyll conductance during drought in rice. J Exp
875	Bot 69:4033-4045.
876	Williams K, Percival F, Merino J, Mooney HA (1987) Estimation of tissue
877	construction cost from heat of combustion and organic nitrogen content. Plant Cell
878	Environ 10:725-734.
879	Xia ZC, He Y, Yu L, Lv RB, Korpelainen H, Li CY (2020) Sex-specific strategies of
880	phosphorus acquisition in Populus cathayana as affected by soil P availability and
881	distribution. New Phytol 225:782-792.
882	Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van Der Putten PE, Vos JAN
883	(2009) Using combined measurements of gas exchange and chlorophyll
884	fluorescence to estimate parameters of a biochemical C ₃ photosynthesis model: a
885	critical appraisal and a new integrated approach applied to leaves in a wheat
886	(Triticum aestivum) canopy. Plant Cell Environ 32:448-464.
887	Zait Y, Shtein I, Schwartz A (2019) Long-term acclimation to drought, salinity and
888	temperature in the thermophilic tree Ziziphus spina-christi: revealing different
889	tradeoffs between mesophyll and stomatal conductance. Tree Physiol 39:701-716.

Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater
yield. Annu Rev Plant Biol 61:235-261.

892

893 Figure legends

894

Figure 1 Representative light microscopy images (a, b) and transmission electron 895 microscopy images (c, d) of the leaves of P. cathayana females and males grown with 896 NO₃⁻ or NH₄⁺ supply, and with or without salt stress (50 mM NaCl addition for 14 897 days). Bar = 50 μ m for images a and b. Leaf upper epidermis (ue), leaf mesophyll 898 palisade tissue (pl), leaf mesophyll spongy tissue (sp), leaf lower epidermis (le), leaf 899 vascular tissue (v), cell wall (cw), chloroplast (ch) and starch granule (s). 900 901 Figure 2 Relationships of the light-saturated rate of photosynthesis with stomatal 902 conductance (g_s) (a) and mesophyll conductance (g_m) (b), and the relationships of g_m 903

with leaf Na⁺ concentration (c) and CO₂ drawdown (C_i – C_c) (d) from sub-stomatal cavities (C_i) to chloroplasts (C_c) in *P. cathayana* females (F) and males (M) grown with NO₃⁻ or NH₄⁺ supply, and with or without salt stress. Salt stress application as in Figure 1.

908

Figure 3 Relationships of CO₂ mesophyll conductance (g_m) with the volume fraction of intercellular air space (f_{ias}) (a), the surface area of mesophyll cells adjacent to intercellular air space (S_m/S) (b), the chloroplast surface area exposed to intercellular air space per leaf area (S_c/S) (c) and the cell wall thickness (T_{cw}) (d) in *P. cathayana* females (F) and males (M) grown with NO₃⁻ or NH₄⁺ supply, and with or without salt stress. Salt stress application as in Figure 1. **Figure 4** Quantitative photosynthetic limitations in leaves of *P. cathayana* females (F) and males (M) grown with NO_3^- or NH_4^+ supply, and with or without salt stress. The photosynthetic limitation $dA/A = S_L + MC_L + B_L$. S_L , stomatal limitation; MC_L , mesophyll conductance; B_L , biochemical limitation. Salt stress application as in Figure 1.

921

Figure 5 The share of limitations of g_m among gas-phase (a) and liquid-phase (b) pathways, and absolute values of gas- (c) and liquid-phase (d) conductance in leaves of *P. cathayana* females and males grown with NO₃⁻ or NH₄⁺ supply, and with or without salt stress. Salt stress application as in Figure 1.

926

Figure 6 Anatomical limitations of CO_2 mesophyll conductance (g_m) and CO_2 927 conductance in leaves of *P. cathayana* females (F) and males (M) grown with NO₃⁻ or 928 NH4⁺ supply with or without salt stress. The share of CO₂ liquid-phase diffusive 929 limitation (a, b) and absolute values of conductance among cytoplasm (g_{cyt1}) and 930 chloroplast stroma (g_{st1}) (c), cell wall (g_{cw}) , chloroplast envelope (g_{env}) and plasma 931 membrane (g_{pl}) (d). The g_{st1} variable is the stromal conductance perpendicular to cell 932 walls, and g_{cyt1} is the cytosolic conductance from the plasmalemma inner surface 933 towards the outer surface of chloroplasts. A constant value of 0.0035 m s⁻¹ was used 934 for both plasmalemma and chloroplast envelope conductance. Additional components 935 of the diffusion pathway are provided in Figure S2. Salt stress application as in Figure 936

937 1.

939	Figure 7 Direct and indirect effects of leaf structure, biomass allocation and the
940	surface area of chloroplast exposed to intercellular air spaces per unit leaf area (S_c/S),
941	mesophyll cell area per transverse section width (S/W), CO ₂ mesophyll conductance
942	(g_m) and photosynthesis (A) in P. cathayana females and males grown with NO ₃ ⁻ or
943	$\mathrm{NH_{4}^{+}}$ supply, and with or without salt stress. Multiple-layer rectangles represent the
944	first component of PCA conducted for the leaf structure and biomass allocation. The
945	arrows indicate the hypothesized direction of causation. The arrow width represents
946	the strength of relationships. Black solid and dotted arrows represent positive and
947	negative relationships, respectively. Grey arrows represent nonsignificant
948	relationships. The leaf structure traits include mesophyll palisade cell area (A_{pl}), the
949	volume fraction of intercellular air space (f_{ias}), leaf thickness (T_l), mesophyll surface
950	area exposed to intercellular air space per unit leaf area (S_m/S), cell wall thickness
951	(T_{cw}) , mesophyll length (L_m) , mesophyll palisade tissue length (L_{pl}) , mesophyll
952	spongy tissue length (L_{sp}), leaf dry mass per unit area (<i>LMA</i>), mesophyll spongy cell
953	density (D_{sp}) , chloroplast length (L_{cl}) , mesophyll palisade cell density (D_{pl}) ,
954	chlorophyll content (Chl), chloroplast width (W_{cl}), and mesophyll spongy cell area
955	(A_{sp}) . The biomass allocation includes specific root length (SLR), root length density
956	(RLD), stem dry mass (Ws), leaf dry mass (W1), root dry mass, shoot dry mass/root
957	dry mass (S/R), and leaf dry mass/(stem and root dry mass) (L/(S+R)). The numbers
958	adjacent to the arrows are the standardized path coefficients. The significance values

are shown as follows: ns, not significant; * $0.01 < P \le 0.05$; ** $0.001 < P \le 0.01$; *** P

960
$$\leq 0.001$$
. $X^2 = 7.48$, $p = 0.006$, $RMSE = 0.19$.

961

Figure 8 A schematic model for leaf anatomical traits, CO₂ diffusion pathway and 962 conductance inside leaves of P. cathayana females and males with salt stress under 963 NO_3^- or NH_4^+ supply. The width of the red line represents the strength of CO_2 964 diffusion conductance into leaves. Blue dots indicate CO₂. g_{cw}, CO₂ transfer 965 conductance through cell wall; genv, CO₂ transfer conductance through chloroplast 966 967 envelope; g_{pl} , CO₂ transfer conductance through plasma membrane; g_{st1} , the stromal conductance perpendicular to cell wall; g_{st2} , the stromal conductance parallel with the 968 cell wall; g_{cvt1}, CO₂ transfer conductance through cytoplasm from the plasmalemma 969 970 inner surface to the outer surface of chloroplasts; g_{cyt2} , cytosolic conductance from the plasmalemma inner surface to the outer surface of chloroplasts; T_{leaf} , leaf thickness; P, 971 mesophyll palisade tissue; S, mesophyll spongy tissue; C, chloroplast. Salt stress 972 973 application as in Figure 1. The relative values of the liquid-phase components based 974 on the Figure 6 and Figure S2. Values of g_{cvt2} and g_{cvt1} under NO₃⁻ supply, and g_{st1} , $g_{\text{cyt1}}, g_{\text{cyt2}}$ and g_{cw} under NH₄⁺ supply were lower in females than in males. The values 975 of g_{st2} under NO₃⁻ supply were higher in females than females. 976

977

978

979

982 Figure 1

995 Figure 2

1008 Figure 3

1021 Figure 4

1035 Figure 5

1050	Figure	7
1000	- igait	

		af str	ucture							
	Λ <u></u>			T	**	4 4	Bio	massa	allocat	tion
	A _{pl} J _{ia}	s / ₁	3 _m /3	I _{cw}	0.47**	->	SRL	RLD	Ws	W
	L _m L _p	L _{sp}	LMA	D _{sp}		*	Wr	S/R	L/(S	5+R)
	L _{cl} D	ol Ch	<i>I</i> w _{cl}	A _{sp}	0.36*	/			/	
		().	```` ?*```		>).34	***		-0.03	
	\backslash	\	S _c /S	\leq				s/w	· /	
		0	/	0.4	2*** g _m	K	.60**		6	v
		.0 4		0.0	***2		1	NO A	0.	
							<i>``</i>	/		
					A	K				
1051										
1052										
1053										
1054										
1055										
1056										
1057										
1058										
1059										
1060										
1061										
1062										
1063										

Table 1 Leaf biomass and area, leaf structural and gas exchange characteristics, leaf construction cost and root traits in *P. cathayana* females and

Salt	Ν	Sex	Leaf	Leaf area	LMA	Leaf CC	$F_{\rm v}/F_{\rm m}$	J	V _{cmax}	SRL	RLD	Root
	form		biomass									biomass
0	NO ₃ ⁻	Female	14.14±0.93a	85.14±5.90a	37.83±3.57d	1.39±0.01a	0.814±0.01a	47.45±3.86a	65.99±1.68b	6.91±0.50cd	1.70±0.15a	8.04±0.44a
0	NO_3^-	Male	8.69±0.28cd	51.65±6.57d	45.20±2.18c	1.39±0.01a	0.808±0.01a	50.95±2.72a	74.44±4.43a	7.27±1.08cd	0.671±0.06e	4.08±0.35d
0	$\mathrm{NH4}^{\mathrm{+}}$	Female	12.83±1.46b	72.09±5.54b	36.62±2.78d	1.37±0.06ab	0.815±0.01a	35.18±3.85b	58.18±5.12c	8.25±0.78c	1.24±0.13b	6.87±0.44b
0	$\mathrm{NH4}^{\mathrm{+}}$	Male	8.41±0.74cd	43.77±1.20d	45.54±1.10c	1.39±0.01a	0.794±0.01b	47.78±0.99a	66.17±3.44b	6.87±1.41cd	0.847±0.06d	5.38±0.25c
50	NO_3^-	Female	9.54±0.45c	68.28±4.15bc	51.67±3.09b	1.37±0.004ab	0.769±0.01cd	17.93±2.81d	51.47±4.09d	13.611.15a	1.29±0.05b	7.12±0.56b
50	NO_3^-	Male	8.06±0.60de	50.60±5.96d	54.58±2.44ab	1.39±0.01a	0.773±0.01c	35.13±3.90b	65.79±3.12b	6.51±0.67d	1.56±0.10a	4.54±0.28d
50	$\mathrm{NH_{4}^{+}}$	Female	8.44±0.95cde	63.10±4.61c	58.33±4.46a	1.35±0.06c	0.757±0.01d	13.88±1.59d	42.10±2.53e	10.75±1.09b	0.784±0.06de	4.57±0.31d
50	$\mathrm{NH_{4}^{+}}$	Male	6.64±1.02f	45.93±2.18d	53.06±2.40b	1.41±0.01a	0.790±0.01b	24.18±2.16c	58.68±2.64c	7.39±0.92cd	1.01±0.14c	3.25±0.40e
		P_{se}	***	***	**	***	ns	***	***	***	***	***
		$P_{\rm sa}$	***	***	***	ns	***	***	***	***	ns	***
		P_{n}	***	***	ns	ns	ns	***	***	ns	***	***
		$P_{\mathrm{se}^{ imes}\mathrm{sa}}$	***	*	***	***	***	**	**	***	***	**
		$P_{\mathrm{se}^{ imes n}}$	Ns	ns	ns	***	ns	ns	ns	ns	***	***
		$P_{\mathrm{sa} imes \mathrm{n}}$	Ns	**	Ns	ns	ns	ns	ns	*	***	***
		$P_{\mathrm{se} \times \mathrm{sa} \times \mathrm{n}}$	Ns	ns	*	ns	**	***	ns	***	***	*

1067 males under NO_3^- or NH_4^+ supply, and with or without salt stress.

1069	Leaf biomass (g); leaf area (cm ²); <i>LMA</i> (g m ⁻²), leaf dry mass per unit leaf area; leaf CC (g glucose g ⁻¹), leaf construction cost; F_v/F_m , maximum
1070	quantum efficiency of PSII photochemistry; J (µmol m ⁻² s ⁻¹), photosynthetic electron transport rate from chlorophyll fluorescence (Eq. 2); V_{cmax}
1071	(μ mol m ⁻² s ⁻¹), the maximum carboxylase activity of Rubisco; SRL (m g ⁻¹), specific root length; RLD (cm cm ⁻³), root length density; root
1072	biomass (g). P_{se} , sex effect; P_{sa} , salt effect; P_n , N form effect (NO ₃ ⁻ and NH ₄ ⁺); $P_{se\times sa}$, the interaction effect of sex and salt stress; $P_{n\times sa}$, the
1073	interaction effect of N forms and salt stress; $P_{se\times n}$, the interaction effect of sex and N forms; $P_{se\times n\times sa}$, the interaction effect of sex, N forms and
1074	salt stress. Different letters indicate significant differences between treatments ($P \le 0.05$, three-way ANOVA followed by Duncan's tests). Data
1075	are mean \pm SE ($n = 4$). The significance values are shown as follows: ns, not significant; * 0.01 < $P \le 0.05$; ** 0.001 < $P \le 0.01$; *** $P \le 0.001$.
1076	
1077	
1078	
1079	
1080	
1081	

Table 2 Leaf thickness and anatomical traits in *P. cathayana* females and males grown under NO_3^- or NH_4^+ supply, and with or without salt

1083 stress. Data are mean \pm SE (n = 4).

Salt	Ν	Sex	fias (%)	S _m /S	Sc/S	S/W	Tı	T _{cw}	Dchl	Lchl	T _{chl}	$\Delta L_{\rm cyt,1}$	$\Delta L_{\rm cyt2}$
	form												
0	NO_3^-	Female	28.21±0.93a	9.60±0.77ab	7.36±0.99bc	71.5±6.0b	171.3±3.2b	0.139±0.004d	12.8±0.9cd	5.9±0.6ab	1.7±0.09c	0.106±0.13e	0.864±0.040e
0	NO_3^-	Male	28.28±1.67a	7.76±0.22c	7.01±0.24c	35.6±4.7d	220.6±17.8a	0.123±0.001e	16.3±1.0a	6.1±0.6a	1.3±0.06e	0.093±0.002e	0.821±0.004e
0	$\mathrm{NH_4^+}$	Female	22.35±1.78b	10.04±0.36a	7.98±0.63ab	72.9±0.91b	177.8±8.8b	$0.144{\pm}0.004d$	11.5±0.6d	4.7±0.6c	1.7±0.06c	0.138±0.10d	0.969±0.025d
0	$\mathrm{NH_{4}^{+}}$	Male	23.90±2.58b	8.54±0.66bc	8.45±0.65bc	42.5±5.7d	216.1±44.2a	0.116±0.007e	13.8±1.0bc	6.2±0.5a	1.6±0.09cd	$0.074{\pm}0.003f$	0.877±0.034e
50	NO_3^-	Female	18.14±0.74c	6.93±0.46d	5.93±0.69d	82.7±1.5a	177.3±1.9b	0.171±0.004b	8.8±1.0e	5.2±0.6bc	2.6±0.2b	$0.202 \pm 0.016b$	$1.38 \pm 0.042b$
50	NO_3^-	Male	22.90±2.62b	8.40±1.09bc	6.31±0.75c	52.5±8.9c	212.3±2.7a	0.160±0.007c	16.3±1.3a	5.9±0.2ab	1.4±0.05de	0.162±0.016c	$1.02{\pm}0.058d$
50	$\mathrm{NH_{4}^{+}}$	Female	14.49±0.67d	6.22±0.16d	4.96±0.63e	89.2±2.6a	177.6±3.9b	0.203±0.009a	9.0±0.8e	5.2±0.5bc	3.2±0.3a	0.279±0.018a	1.59±0.11a
50	$\mathrm{NH_4^+}$	Male	23.29±2.55b	8.97±1.45abc	7.13±0.68c	41.0±4.4d	212.5±9.2a	0.137±0.005d	14.5±0.6b	6.3±0.5a	1.6±0.1cd	$0.218 {\pm} 0.007 b$	$1.22{\pm}0.078c$
		P_{se}	***	ns	***	***	***	***	***	***	***	***	***
		P_{sa}	***	***	***	***	ns	***	***	ns	***	***	***
		Pn	***	ns	ns	ns	ns	ns	***	ns	***	***	***
		$P_{\mathrm{se} imes \mathrm{sa}}$	***	***	ns	ns	ns	***	***	ns	***	ns	***
		$P_{\mathrm{se}^{ imes \mathrm{n}}}$	***	ns	ns	*	ns	***	*	*	ns	***	ns
		$P_{\mathrm{sa} imes \mathrm{n}}$	***	ns	ns	*	ns	ns	ns	ns	*	***	**
		$P_{\mathrm{se} imes \mathrm{sa} imes \mathrm{n}}$	Ns	ns	*	***	ns	***	ns	ns	**	ns	ns

 f_{ias} (%), the volume fraction of intercellular air space per unit leaf area; S_m/S (m² m⁻²), mesophyll surface area exposed to intercellular air space 1086 per unit leaf area; S_c/S (m² m⁻²), chloroplast surface area exposed to intercellular air space per unit leaf area; S/W (μ m² μ m⁻¹), mesophyll cell 1087 area per transverse section width; T_1 (µm), leaf thickness; T_{cw} (µm), cell wall thickness; D_{chl} (no. no), chloroplast density; L_{chl} (µm), chloroplast 1088 length; T_{chl} (µm), chloroplast thickness; $\Delta L_{cvt,1}$ (µm), the vertical distance between the chloroplasts and cell walls; $\Delta L_{cvt,2}$ (µm), the distance 1089 between the neighboring chloroplasts. P_{se} , sex effect; P_{sa} , salt effect; P_n , N form effect (NO₃⁻ and NH₄⁺); $P_{se\times sa}$, the interaction effect of sex and 1090 salt stress; $P_{n\times sa}$, the interaction effect of N forms and salt stress; $P_{se\times n}$, the interaction effect of sex and N forms; $P_{se\times n\times sa}$, the interaction effect of 1091 sex, N forms and salt stress. Different letters indicate significant differences between treatments (P < 0.05, three-way ANOVA followed by 1092 Duncan's tests). Data are mean \pm SE (n = 4). The significance values are shown as follows: ns, not significant; * 0.01 < $P \le 0.05$; ** 0.001 < $P \le 0.05$; 1093 0.01; *** $P \le 0.001$. 1094