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We address the problem of radar phase-coded waveform design for extended target recognition
in the presence of colored Gaussian disturbance. Phase-coded waveforms are selected since they
can fully exploit the transmit power with sufficient variability. An important constraint, target
detection performance, is considered to meet the practical requirements. The waveform is designed
to achieve maximum recognition performance under a control on the achievable signal-to-noise
ratio (SNR) of every possible target hypothesis. We formulate the code design in terms of a
nonconvex, NP-hard quadratic optimization problem in the cases of both continuous and discrete
phases. Techniques based on semidefinite relaxation (SDR) and randomization are proposed to
approximate the optimal solutions. Simulation results show that the recognition performance and
the detection requirements are well balanced and accurate approximations are achieved.

1. Introduction

Cognitive radar is a newly proposed radar system concept, in which waveform-agile sensing
can be realized with the featured feedback structure [1]. Based on the prior knowledge
about targets and environments, transmit signals can be adaptively optimized to improve
system performance and efficiency. Inspired by this concept, many attempts have been
focusing on target recognition using waveform adaptation. In [2], Goodman et al. proposed
the integration of waveform design techniques with a sequential hypothesis testing (SHT)
framework [3] that controls when hard decisions may be made with adequate confidence
[4]. They also compared two different waveform design techniques for use with active
sensors operating in a target recognition application. One is considered by Bell [5] based
on a maximization of the mutual information between a random target ensemble and the
echo signal, while the other is based on maximizing the weighted average Euclidean



2 Mathematical Problems in Engineering

distance or Mahalanobis distance (in additive colored noise) between the ideal echoes from
different target hypotheses [6, 7], where known impulse responses are used to model the
target scattering behaviors. In [8], the optimum Multiinput Multioutput (MIMO) target
identification problem was formulated as a quadratic optimization, which derived a solution
with unconstrained amplitude based on the eigenvalue decomposition method.

However, some practical constraints must be considered in the recognition waveform
design. The first is constant waveform modulus. From the standpoint of hardware realization
[9], modulus constraint is more suitable than the total energy constraint considered in [2].
Waveforms were restricted to be constant modulus in recent researches, including single-
frequency signals [10] and phase-coded signals [11, 12], to fully exploit the transmit power in
the pulse duration. Meanwhile, the use of nonlinear frequency modulated (NLFM) waveform
to achieve the constant modulus based on the stationary phase method was also discussed
in [8], where it is difficult to obtain the designed optimal signal in accordance with the
arbitrary energy spectral density (ESD) or autocorrelation function. The second constraint is
the detection performance. Detection is absolutely an essential prerequisite for any estimation
or recognition task in a radar system [13]. The signal model in [2] can only be applied to the
situations with high signal-to-noise ratios (SNRs), in which target detection may not be a
problem. In the situations that detection performances are critical, target output SNRs must
be ensured in the waveform design to meet the detection requirements.

In this paper, we focus on the phase-coded waveform design for extended target
recognition in the presence of colored Gaussian disturbance. The phase code is optimized
according to the following criterion: maximization of the recognition performance under
a control on the output SNR of every possible target hypothesis. Because of the stringent
constraint on each target hypothesis, or with the increase in the number of target hypotheses,
the detection requirements may not be met simultaneously for all the possible targets.
To measure the impact of the detection constraints on the optimization, a preanalysis is
performed, in which the maximum achievable SNR for all the hypotheses is acquired.
The question of whether our detection-constrained optimization problem has a nonempty
feasible region is clearly determined by the maximum achievable SNR and our desired SNR.
If the desired SNR is smaller than the maximum achievable SNR, optimal solution exists.
Otherwise, no solution can be found. Taking into account the modulus constraint and the
detection SNR threshold, we formulate the code design in terms of a nonconvex, NP-hard
quadratic optimization problem in the cases of both continuous and discrete phases. A novel
and computationally attractive method, which is referred to as Semidefinite Relaxation (SDR)
and randomization [14, 15], is presented to approximate the optimal solutions. The SDR
technique can be applied to many nonconvex quadratically constrained quadratic programs
(QCQPs) in an almost mechanical fashion [16]. Many practical experiences have indicated
that SDR is capable of providing accurate approximations to the QCQPs [17, 18]. The SDR
method first relaxes the NP-hard quadratic optimization problem to a convex optimization
problem by abandoning the rank one constraint on the waveform autocorrelation matrix.
After the relaxation, the relaxed problem can be solved by using the semidefinite prog-
ramming (SDP) with polynomial complexity [19]. The obtained autocorrelation matrix is
then used to randomly generate the feasible solutions for the original problem. The solution
with maximum weighted average distance is selected to be the result. Taking the advantage
of the randomization, the proposed approach can avoid being trapped in local optima.
Compared with the other methods [8, 11, 12], the accurate approximations can be achieved
with a modest number of randomizations. In addition, since SDR expands the feasible region
of the original problem and keeps any other condition unchanged, the result of the relaxed
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problem can be used as an upper bound for the optimization. Simulation results show that
the performance of the approximate solution is very close to the upper bound.

2. System Model

We consider the target recognition problem in which one of M possible targets may appear
[2]. Our objective is to identify the target under a control on the detection SNR of every target
hypothesis. The transmit phase-coded waveform is denoted by

s = [s(1), s(2), . . . , s(N)]T =
[
exp

(
jϕ1

)
, exp

(
jϕ2

)
, . . . , exp

(
jϕN

)]T , (2.1)

where (·)T is the transpose operator, ϕn denotes the phase of the nth entry s(n), and N is
the length of the code. Each target hypothesis Hi, i ∈ {1, 2, . . . ,M} has a fixed impulse
response hi = [hi(1), hi(2), . . . , hi(L)]

T which is exactly known. If the ith target is present,
the corresponding echo signal is given by

y = hi ∗ s + n, (2.2)

where the disturbance vector n is a zero-mean complex circular Gaussian vector with
known positive definite covariance matrix R and ∗ denotes the convolution operator. The
convolution operation in (2.2) can be replaced with matrix multiplication by defining the
convolution matrix

Qi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣
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hi(2) hi(1)
. . .
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... hi(2)

. . .
...

hi(L)
...

. . . 0

0 hi(L)
. . . hi(1)

... 0
. . . hi(2)

...
...

. . .
...

0 0 0 hi(L)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(2.3)

which is an L +N − 1 by N complex matrix. Equation (2.2) can therefore be written as

y = Qis + n. (2.4)

3. Phase Code Design Criteria

A waveform design technique was proposed by Goodman et al. [2] to optimize the
transmit waveform under the energy constraint sHs ≤ E, where s is considered as an
arbitrary waveform, (·)H is the Hermitian transpose operator, and E is the transmit energy.
He extended the provably optimal two-target-hypothesis recognition waveform [6] to
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a multihypothesis situation. The idea of the algorithm is to maximize the weighted average
Euclidean distance or Mahalanobis distance (in additive colored noise) between the ideal
echoes from different hypotheses, where the weighting coefficients are designed according to
the prior probabilities of target hypotheses. The mathematical representation of the algorithm
is given by

max sHΩs

s.t. sHs ≤ E,
(3.1)

where the weighted target correlation matrix Ω is defined as

Ω =
M−1∑

i=1

M∑

j=i+1

PiPj

(
Qi −Qj

)HR−1(Qi −Qj

)
. (3.2)

where Pi and Pj are the prior probabilities of hypothesis Hi and Hj . Under the total energy
constraint, the maximization problem can be easily solved. The optimal solution of (3.1) is
proportional to the eigenvector corresponding to the largest eigenvalue of Ω. Unfortunately,
the eigenvector does not usually have constant modulus and cannot guarantee the output
SNR for all the possible targets.

To meet the practical requirements, we modify the model by considering two
additional constraints, constant waveform modulus and target detection performance. As
shown in (2.1), we restrict the transmit waveform to a phase code that has constant waveform
modulus. Phase codes can fully exploit the transmit power in the pulse duration with
sufficient variability, which makes the optimization possible.

The target detection problem has been previously studied by Bell in [5]. He pointed
out that the optimal receiver filter that maximizes the output SNR for a given transmit
waveform s is equal to R−1Qs, and the corresponding SNR is given by sHQHR−1Qs, where
Q is the convolution matrix of a specific extended target. Since the optimal receiver filter is
related to target property Q, a unified receiver filter, for example, the traditional matched
filter R−1s, is no longer appropriate for the multihypothesis extended target situation. For
the radars that aim to detect and identify several target hypotheses, an intuitive detection
method is to use all the possible receiver filters R−1Qis in the detection procedure. If the
convolution of the echo signal with any of the receiver filter exceeds the detection threshold,
a positive decision is made. Under this strategy, to ensure the output SNR of every possible
target hypothesis, the transmit waveform should be designed to satisfy

sHOis ≥ d, i ∈ {1, 2, . . . ,M}, (3.3)

where Oi = QH
i R−1Qi and d is the desired SNR. The criteria in (3.3) are universal to different

detection methods, since it controls the lower limit of the achievable SNR at the receiver with
no limitation on the specific algorithm. It is obviously a necessary condition for any detection
strategy. We also consider two possibilities for the entries of s. One is the continuous phase
code that ϕn can take any value between 0 and 2π , namely, the modulus of the nth entry
|s(n)| = 1, n = 1, . . . ,N. The other is a discrete phase code with quantization interval 2π/D,
which can be expressed as s(n) ∈ {1, ej2π/D, . . . , ej2π(D−1)/D}, n = 1, . . .N.
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4. Phase Coding Algorithm under Detection Constraints

In this section, we formulate the continuous phase-coded waveform design in terms of the
following complex quadratic optimization problem:

max sHΩs

s.t. sHOis ≥ d, i ∈ {1, 2, . . . ,M},
|s(n)| = 1, n = 1, . . . ,N.

(4.1)

The objective function in this problem is the same as the one in [2], which aims to
maximize the weighted average Mahalanobis distance between the ideal echoes from
different hypotheses. In contrast with the problem in [2], additional practical constraints are
considered. The modulus of the waveform is restricted to be a constant, which equals 1 in
this case. The detection constraints require that the achievable SNR for each target hypothesis
be larger than the desired SNR d. The feasible region in (4.1) highly depends on the target
properties and the noise characteristic. In the case of weak disturbance, the demands for
detection are easily met. Feasible region is slightly affected by the detection constraints. The
problem may reduce to a simpler quadratic optimization problem shown as

max sHΩs

s.t. |s(n)| = 1, n = 1, . . . ,N,
(4.2)

which is quite similar to the case studied in [2], except the constant modulus constraint. In
the case that detection requirements are critical, the constraints in (4.1) are necessary and
important. The solution of the problem is highly dependent on these constraints. In some
extreme cases, the feasible region may appear to be an empty set because of the stringent
constraints. It means that no matter what phase code is used, the desired SNRs cannot be
achieved simultaneously for all the target hypotheses. To meet most of the goals, one may
need to relax the constraints on the hypotheses with low prior probabilities. It is necessary
to perform a preanalysis on the detection constraints. By solving the following optimization
problem:

max t

s.t. sHOis ≥ t, i ∈ {1, 2, . . . ,M},
|s(n)| = 1, n = 1, . . .N,

(4.3)

one can acquire the maximum achievable SNR for all the target hypotheses, which is a
boundary point for the desired SNR d. If d is larger than t, the feasible region in (4.1) is
empty. Concessions must be made in the constraints, or no solution can be obtained. If d is
much smaller than t, the resulting value of (4.1) may be close to that of (4.2). We use the ratio
between d and t to measure the impact of the detection constraints on the resulting value. For
those situations that approximately satisfy 0.1 < d/t < 1, the optimization problem in (4.1) is
very important.

Since both the problems in (4.1) and (4.3) are nonconvex and NP-hard, one cannot
find polynomial time algorithms for computing the optimal solutions. As a consequence, our
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goal is to find an efficient algorithm for approximating the solutions. Semidefinite Relaxation
(SDR) and randomization technique can be applied to such nonconvex quadratically
constrained quadratic programs, and it is capable of providing accurate approximations [16].
By defining the matrix Z = ssH , the problem in (4.1) can be written in the following form:

max tr(ΩZ)

s.t. tr(OiZ) ≥ d, i ∈ {1, 2, . . . ,M},
Z(n, n) = 1, n = 1, . . . ,N,

Z ≥ 0, rank(Z) = 1,

(4.4)

where tr(·) denotes the trace of a matrix, Z(n, n) denotes the (n, n)th entry of Z, Z ≥ 0
indicates that Z is positive semidefinite, and rank(·) denotes the rank of a matrix. The
objective function and all the constraints in (4.4) are convex in Z, except the rank constraint
rank(Z) = 1. By abandoning the rank constraint, the problem can be relaxed to a convex
optimization problem as follows:

max tr(ΩZ)

s.t. tr(OiZ) ≥ d, i ∈ {1, 2, . . . ,M},
Z(n, n) = 1, n = 1, . . . ,N,

Z ≥ 0.

(4.5)

It can be solved by using the semidefinite programming (SDP) to any arbitrary accuracy
with polynomial complexity in the problem size N and the number of constraints M. The
complexity also depends on the required solution accuracy.

The next issue that must be addressed is how to convert a global optimal solution Ẑ
to (4.5) into a feasible solution s to (4.1) [16]. If the rank of Ẑ equals one, the s that satisfies
Ẑ = ssH is the global optimal solution. It means that the relaxation in the feasible region
does not change the maximum point of (4.4). In general, the rank of Ẑ is greater than one.
Feasible s must be extracted from Ẑ. Intuitively, a vector γ randomly generated from a zero-
mean complex normal distribution with covariance matrix Ẑ can be used as an approximate
solution. To meet the constant modulus constraint, we map γ to a constant modulus vector
via s = exp[j arg(γ)], where the function arg(·) returns the phase angles of a complex vector
in [0, 2π). If s meets all the detection constraints in (4.1), it is an eligible approximation.
Otherwise, another randomization step is required. In order to improve the approximation
quality, the randomization step is repeated several times. The eligible s yielding the largest
objective function value is chosen as the approximate solution.

Since the relaxation procedure in (4.5) expands the feasible region of the original
problem and keeps any other condition unchanged, the acquired objective function tr(ΩẐ)
can be used as an upper bound for (4.1). Simulation results show that with a modest number
of randomizations, the approximate solution is very close to the upper bound. In other words,
accurate approximation is achieved.
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Problem (4.3) also can be solved by using the same relaxation and randomization
method. It is relaxed to the following convex optimization form:

max t

s.t. tr(OiZ) ≥ t, i ∈ {1, 2, . . . ,M},
Z(n, n) = 1, n = 1, . . . ,N,

Z ≥ 0.

(4.6)

Same mapping method is used to randomly obtain the constant modulus vector s from the
global optimal solution Ẑt to (4.6). The s that maximizes the minimum achievable SNR for
all the target hypotheses is selected to be the approximate solution, and the corresponding
objective function t is acquired to be the boundary point for the desired SNR d.

The complete algorithm to approximate the optimal phase code is summarized as
follows. It consists of two parts, estimating the maximum achievable SNR t and finding the
optimal phase code s.

Algorithm 4.1 (Estimating the maximum achievable SNR). (1) Solve the SDP problem below
and denote by Ẑt an optimal solution

max t

s.t. tr(OiZ) ≥ t, i ∈ {1, 2, . . . ,M}
Z(n, n) = 1, n = 1, . . . ,N

Z ≥ 0.

(4.7)

(2) Generate random vectors γk, k ∈ {1, 2, . . . , K} from the complex normal distrib-
ution NC(0, Ẑt), where K is the number of randomizations.

(3) Assign each sk = exp[j arg(γk)]. The maximum achievable SNR is then given by

t = max
k∈{1,2,...,K}

[
min

i∈{1,2,...,M}

(
sHk Oisk

)]
. (4.8)

Algorithm 4.2 (Finding the optimal phase code). (1) If the required SNR d > t, the feasible
region is empty. Concessions must be made in theconstraints, or no solution can be acquired.

(2) Solve the SDP problem below and denote by Ẑ an optimal solution

max tr(ΩZ)

s.t. tr(OiZ) ≥ d, i ∈ {1, 2, . . . ,M}
Z(n, n) = 1, n = 1, . . .N

Z ≥ 0.

(4.9)
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(3) Generate random vectors γk, k ∈ {1, 2, . . . , K} from the complex normal distrib-
ution NC(0, Ẑ).

(4) Assign each sk = exp[j arg(γk)]. The feasible sk that satisfies sH
k
Oisk ≥ d, i ∈

{1, 2, . . . ,M} yielding the largest objective function is chosen as the approximate solution,
which is shown as

U =
{
k : sHk Oisk ≥ d ∀1 ≤ i ≤ M; 1 ≤ k ≤ K

}
,

s = arg max
sk, k∈U

(
sHk Ωsk

)
.

(4.10)

5. Discrete Phase Coding Algorithm under Detection Constraints

In this section, we focus on a more constrained problem, discrete phase code design, that the
phase of the code can only take several values equally spaced in [0, 2π). For example, the
phase of a binary phase code is selected from {0, π} and the phase alphabet of a quadrature
phase code is {0, π/2, π, 3π/2}. For an alphabet with quantization interval 2π/D, the phase-
coded waveform design is formulated as follows:

max sHΩs

s.t. sHOis ≥ d, i ∈ {1, 2, . . . ,M},

s(n) ∈
{

1, ej2π/D, . . . , ej2π(D−1)/D
}
, n = 1, . . .N.

(5.1)

Compared to the continuous phase design in (4.1), the feasible region in (5.1) is even smaller.
The objective function of (4.1) can be used as an upper bound for (5.1), since discrete phase
code is a subset of continuous phase code. For the same reason, if an alphabet size D1 is an
integer multiple of another size D2, the objective function of (5.1) with size D1 is definitely
larger than that with D2. We can further speculate that the objective function in (5.1) increases
monotonically with increasing alphabet size D, even in the situations that alphabet sizes are
coprime.

The SDR algorithm we presented in the previous section can be applied to (5.1), if
some refinements are made in the mapping procedure. We use the following mapping rule to
replace the continuous one given by s = exp[j arg(γ)]:

s = exp
[
j

(
2π
D

)
·
⌊

arg(γ)
(2π/D)

⌋]
. (5.2)

The idea above is simple and clear. Continuous phases arg(γ) are rounded down to the
nearest discrete phase values in {0, 2π/D, . . . , 2π(D − 1)/D} to adapt to the requirements
of discrete phases. One may notice that the mapping is not “unbiased.” A round-down is
applied rather than the “unbiased” round to nearest. In fact, these methods have exactly the
same performance, even for round-up. It is because the bias here can be treated as an initial
phase of the waveform, and the initial phase does not affect the result.
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The complete algorithm is summarized in Algorithm 5.1.

Algorithm 5.1 (Finding the optimal discrete phase code). (1) Solve the SDP problem below
and denote by Ẑ an optimal solution

max tr(ΩZ)

s.t. tr(OiZ) ≥ d, i ∈ {1, 2, . . . ,M}
Z(n, n) = 1, n = 1, . . . ,N

Z ≥ 0.

(5.3)

(2) Generate random vectors γk, k ∈ {1, 2, . . . , K} from the complex normal
distribution NC(0, Ẑ).

(3) Assign each sk = exp[j(2π/D) · �arg(γk)/(2π/D)�]. The feasible sk that satisfies
sHk Oisk ≥ d, i ∈ {1, 2, . . . ,M} yielding the largest objective function is chosen as the
approximate solution, which is shown as

U =
{
k : sHk Oisk ≥ d ∀ 1 ≤ i ≤ M, 1 ≤ k ≤ K

}
,

s = arg max
sk, k∈U

(
sHk Ωsk

) (5.4)

In addition, the study on the maximum achievable SNR also can be imported to dis-
crete cases by using the same mapping rule. It will not be repeatedly stated here.

6. Simulation Results

In this section, we present simulation results that demonstrate the benefits of the presented
algorithms and illustrate the potential consequences of ignoring detection constraints in
recognition waveform design. A target set with M = 4 impulse responses is randomly
generated from a flat power spectral density (PSD). The length of the impulse response L
equals 12. Once the impulse responses are generated, it is assumed that they are known
exactly. The length of the phase code N equals 32 and the covariance matrix R = I. The
initial prior probability Pi is set to 1/M for every target hypothesis.

For Figure 1, we first calculate the maximum achievable SNR t for the target set. The
required SNR d is then set to 0.8t to simulate the situation that detection requirements
are critical. The continuous phase code is designed by using the proposed algorithm
with K = 50 randomizations. The spectra of both the simple recognition waveform (the
approximate solution of (4.2)) and the waveform that considers the detection performance
(the approximate solution of (4.1)) are compared with the weighted target spectral difference.
The weighted target spectral difference is just a representation of the weighted target
correlation matrix (3.2) in the frequency domain. Both the weighted target spectral difference
and the spectrum of the simple recognition waveform are normalized to their peak power.
The spectrum of the detection-constrained waveform is normalized to the simple recognition
waveform’s peak power to ensure that both the waveforms have the same adjustment scale.
As shown in Figure 1, to maximize the weighted Euclidean distance (white noise in this
case), the simple recognition waveform focuses most of its energy on the maximum response
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Figure 1: Waveform spectra (dotted line) compared to target spectral difference (solid line). The spectrum
of the simple recognition waveform is shown in (a), and the spectrum of the detection-constrained
waveform is shown in (b). The desired SNR d = 0.8t.

frequency, since the Fourier transform preserves the Euclidean distance between signal and
its spectrum. However, the phase code that considers the detection performance spreads its
energy into several narrow bands.

An intuitive explanation of the energy spreading is shown in Figure 2, where the
waveform spectra are compared with the spectra of all the four target hypotheses we
attempt to discriminate. Both the waveform spectra are normalized to the simple recognition
waveform’s peak power. The target spectra are normalized to the maximum peak power of
the four targets. As we can see in Figure 2(a), since both target no. 1 and no. 4 show weak
responses near the energy peak of the simple recognition waveform (normalized frequency
0.4), the detection requirements cannot be met for the two. The proposed method distributes
some of the energy to the normalized frequency 0.3 (as shown in Figure 2(b)), where the
responses of target no. 1 and no. 4 are relatively strong, to enhance the detection SNR. The
normalized frequency 0.3 is also the second highest peak of the weighted target spectral
difference (as shown in Figure 1(b)). Therefore, the detection requirements are met without
sacrificing too much recognition performance in the energy redistribution.

In Figure 3, the desired SNR d is adjusted from 0.5t to 0.8t to show the impact of the
detection constraints on the waveform spectrum. Same target set is employed as in Figures 1
and 2. The spectra of the detection-constrained waveforms are also normalized to the simple
recognition waveform’s peak power. As we can see, with the increasing of the desired SNR
the presented algorithm transfers more and more energy from the peak of the target spectral
difference (normalized frequency 0.4) to the place where target no. 1 and no. 4 have relatively
strong responses (normalized frequency 0.3) to meet the detection constraints.

The detail of how the objective function and the four detection constraints are affected
by the increasing of the desired SNR is shown in Table 1. The performances of the simple
recognition waveform (d = 0) and the detection-constrained waveforms under different
thresholds are listed in Table 1. The SNR of every sample target is normalized to t, and the
objective functions are normalized to the simple recognition waveform’s objective function.
For the simple recognition waveform, the SNRs of target no. 2 and no. 3 are more than twice
as large as t, while the SNRs of target no. 1 and no. 4 are less than half of t. The sample
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Figure 2: Waveform spectra (dotted line) compared to sample target spectra (solid line). The spectrum of
simple recognition waveform is shown in (a), and the spectrum of the detection-constrained waveform is
shown in (b). The desired SNR d = 0.8t.
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Figure 3: Detection-constrained waveform spectra (dotted line) compared to target spectral difference
(solid line) in the case of different desired SNR d.

Table 1: objective function and the detection constraints corresponding to the approximate solution under
different thresholds.

Threshold Target no. 1 Target no. 2 Target no. 3 Target no. 4 Objective function

d = 0 0.47 2.35 2.15 0.42 1
d = 0.5t 0.50 2.25 2.03 0.50 0.97
d = 0.6t 0.61 1.96 1.82 0.61 0.91
d = 0.7t 0.70 1.71 1.64 0.71 0.85
d = 0.8t 0.82 1.44 1.44 0.81 0.80

targets show significant difference in detection, since only the recognition performance is
considered in the optimization. In the case of detection-constrained waveforms, the SNRs
of target no. 1 and no. 4 gradually become larger with increasing desired SNR, and always
exceed the threshold. Of course, there is no free lunch. Tighter constraints will inevitably lead
to a decline in the objective function. Not only the recognition objective function but also the
SNRs of target no. 2 and no. 3 decrease with increasing threshold, since part of the transmit
energy is used to improve the SNRs of target no. 1 and no. 4. One may also notice that if the
desired SNR d ≤ 0.4t, the simple recognition waveform is also the optimal solution of the
detection-constrained problem, since the detection constraints are already met.

For Figure 4, 500 target sets are randomly generated according to the model used in
Figures 1 and 2. For each target set, the continuous phase code design problem is solved
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Figure 4: Average approximate ratio versus number of randomizations. The situation of d = 0.2t is shown
in (a), and the situation of d = 0.5t is shown in (b).

and the discrete phase code design problem is solved in different alphabet size D. As we
mentioned in Section 4, the acquired objective function tr(ΩẐ) of the relaxed problem (4.5)
is an upper bound of the continuous phase code design problem (4.1). Although the optimal
solution of (4.1) we attempt to approximate is unknown, the optimal value vopt is squeezed
to sHΩs ≤ vopt ≤ tr(ΩẐ), where s is the designed waveform. The ratio between the achieved
objective function and the upper bound r = sHΩs/ tr(ΩẐ) can be used to measure the
approximate accuracy. If the ratio r is close to 1, it indicates that the approximation is accurate.
However, if r is much smaller than 1, we cannot infer that the approximation is inaccurate.
The average approximate ratio of the 500 target sets is plotted in the figure versus the number
of randomizations K. The objective functions of the discrete phase codes are also normalized
by the continuous upper bound and shown in the figure for comparison. The desired SNR d
equals 0.2t in Figure 4(a) and equals 0.5t in Figure 4(b). We see that the approximate ratios of
all the phase codes become larger with increasing K and gradually approach to their limits.
With a modest number of randomizations (K ≥ 30), the approximate ratio of the continuous
phase code reaches 0.997 in the case of d = 0.2t and 0.977 in the case of d = 0.5t. Even in
the worst case, such approximate accuracy is satisfactory. The discrete phase codes show
performance loss when compared to the continuous phase code, since the feasible region
is even smaller. As shown in the figure, larger alphabet size leads to higher performance.
The objective function increases monotonically with alphabet size D. The performance of the
phase code with 16 phases is very close to that of the continuous phase code.

7. Conclusion

We have proposed and simulated a radar phase-coded waveform design technique for
extended target recognition in the presence of colored Gaussian disturbance. A major
practical issue, target detection performance, has been considered and solved. The waveform
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was designed to maximize the recognition performance under a control on the achievable
SNR of every target hypothesis. Simulation results have highlighted that it is possible to
realize a tradeoff between the recognition performance and the detection requirements.
With a modest number of randomizations, the objective function achieved by the proposed
method was very close to the upper bound obtained from the relaxed problem. Satisfactory
approximate accuracy was therefore guaranteed. Moreover, both the performances of
continuous and discrete phase codes were compared in the simulation. Statistical results have
shown that the discrete phase code with larger phase alphabet size has higher recognition
performance, and the performance gradually approaches to the performance of continuous
phase code with increasing alphabet size.
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