50 research outputs found

    Verifying Computation Tree Logic of Knowledge via Knowledge-Oriented Petri Nets and Ordered Binary Decision Diagrams

    Get PDF
    Computation Tree Logic of Knowledge (CTLK) can specify many requirements of privacy and security of multi-agent systems (MAS). In our previous papers, we defined Knowledge-oriented Petri Net (KPN) to model MAS, proposed similar reachability graph to verify CTLK, gave their model checking algorithms and developed a related tool. In this paper, we use the technique of Ordered Binary Decision Diagrams (OBDD) to encode similar reachability graph in order to alleviate the state explosion problem, and verify more epistemic operators of CTLK. We design the corresponding symbolic model checking algorithms and improve our tool. We compare our model and method with MCMAS that is the state-of-the-art CTLK model checker, and experiments illustrate the advantages of our model and method. We also explain the reasons why our model and method can obtain better performances

    Guard-Function-Constraint-Based Refinement Method to Generate Dynamic Behaviors of Workflow Net with Table

    Get PDF
    In order to model complex workflow systems with databases, and detect their data-flow errors such as data inconsistency, we defined Workflow Net with Table model (WFT-net) in our previous work. We used a Petri net to describe control flows and data flows of a workflow system, and labeled some abstract table operation statements on transitions so as to simulate database operations. Meanwhile, we proposed a data refinement method to construct the state reachability graph of WFT-nets, and used it to verify some properties. However, this data refinement method has a defect, i.e., it does not consider the constraint relation between guard functions, and its state reachability graph possibly has some pseudo states. In order to overcome these problems, we propose a new data refinement method that considers some constraint relations, which can guarantee the correctness of our state reachability graph. What is more, we develop the related algorithms and tool. We also illustrate the usefulness and effectiveness of our method through some examples

    Ghost Dog

    Get PDF
    The single crystal of the extra-large pore zeolite, ITQ-33, was obtained and used to explore its crystal structure details. The ITQ-33 structure was found to be disordered with the columnar periodic building unit, explaining the morphology changes upon the different Si/Ge ratio, and the formation of the hierarchical structure from assembling of ITQ-33 nanofibers

    Anomalous stopping of laser-accelerated intense proton beam in dense ionized matter

    Full text link
    Ultrahigh-intensity lasers (1018^{18}-1022^{22}W/cm2^{2}) have opened up new perspectives in many fields of research and application [1-5]. By irradiating a thin foil, an ultrahigh accelerating field (1012^{12} V/m) can be formed and multi-MeV ions with unprecedentedly high intensity (1010^{10}A/cm2^2) in short time scale (∼\simps) are produced [6-14]. Such beams provide new options in radiography [15], high-yield neutron sources [16], high-energy-density-matter generation [17], and ion fast ignition [18,19]. An accurate understanding of the nonlinear behavior of beam transport in matter is crucial for all these applications. We report here the first experimental evidence of anomalous stopping of a laser-generated high-current proton beam in well-characterized dense ionized matter. The observed stopping power is one order of magnitude higher than single-particle slowing-down theory predictions. We attribute this phenomenon to collective effects where the intense beam drives an decelerating electric field approaching 1GV/m in the dense ionized matter. This finding will have considerable impact on the future path to inertial fusion energy.Comment: 8 pages, 4 figure

    Energy loss enhancement of very intense proton beams in dense matter due to the beam-density effect

    Full text link
    Thoroughly understanding the transport and energy loss of intense ion beams in dense matter is essential for high-energy-density physics and inertial confinement fusion. Here, we report a stopping power experiment with a high-intensity laser-driven proton beam in cold, dense matter. The measured energy loss is one order of magnitude higher than the expectation of individual particle stopping models. We attribute this finding to the proximity of beam ions to each other, which is usually insignificant for relatively-low-current beams from classical accelerators. The ionization of the cold target by the intense ion beam is important for the stopping power calculation and has been considered using proper ionization cross section data. Final theoretical values agree well with the experimental results. Additionally, we extend the stopping power calculation for intense ion beams to plasma scenario based on Ohm's law. Both the proximity- and the Ohmic effect can enhance the energy loss of intense beams in dense matter, which are also summarized as the beam-density effect. This finding is useful for the stopping power estimation of intense beams and significant to fast ignition fusion driven by intense ion beams
    corecore