
Computing and Informatics, Vol. 40, 2021, 1174–1196, doi: 10.31577/cai 2021 5 1174

VERIFYING COMPUTATION TREE LOGIC
OF KNOWLEDGE VIA KNOWLEDGE-ORIENTED
PETRI NETS AND ORDERED BINARY DECISION
DIAGRAMS

Leifeng He, Guanjun Liu∗

Department of Computer Science
Tongji University
201804 Shanghai, China
e-mail: {1710052, liuguanjun}@tongji.edu.cn

Abstract. Computation Tree Logic of Knowledge (CTLK) can specify many re-
quirements of privacy and security of multi-agent systems (MAS). In our previous
papers, we defined Knowledge-oriented Petri Net (KPN) to model MAS, proposed
similar reachability graph to verify CTLK, gave their model checking algorithms
and developed a related tool. In this paper, we use the technique of Ordered Bi-
nary Decision Diagrams (OBDD) to encode similar reachability graph in order to
alleviate the state explosion problem, and verify more epistemic operators of CTLK.
We design the corresponding symbolic model checking algorithms and improve our
tool. We compare our model and method with MCMAS that is the state-of-the-art
CTLK model checker, and experiments illustrate the advantages of our model and
method. We also explain the reasons why our model and method can obtain better
performances.

Keywords: Epistemic logic, model checking, Petri nets, multi-agent systems,
OBDD, CTLK

1 INTRODUCTION

Errors in some privacy/security-critical systems such as privacy protocols can result
in drastic consequences. Therefore, it is necessary for designers to use some logically

∗ Corresponding author

https://doi.org/10.31577/cai_2021_5_1174

Verifying CTLK via KPN and OBDD 1175

precise approaches to verify the correctness of these systems. Model checking [1,
2, 16] is an automated and practically successful approach of formally verifying
these systems.

In the paradigm of model checking, a system S is described by a transition
system [1], a Petri net [3, 4, 13, 22], or a program written in a dedicated modelling
language such as reactive module [5], NUSMV (New Symbolic Model Verifier) [8] and
ISPL (Interpreted Systems Programming Language) [21], called MS. A requirement
(or property) P of the system is specified by a logical formula ϕP . Verifying whether
system S satisfies requirement P is encoded as the problem of checking whether
model MS satisfies formula ϕP , formally written as MS |= ϕP . Some requirements
such as deadlock-freeness, safety, liveness and fairness, can be encoded by discrete
temporal logics such as Linear Temporal Logic (LTL) [2, 6] and Computation Tree
Logic (CTL) [2, 15].

A big challenge in model checking is the state explosion problem, i.e., the state
space of a system grows exponentially with the number of variables. Many tech-
niques have been developed to deal with this problem such as Ordered Binary De-
cision Diagrams (OBDD) [9], abstraction [32] and partial order reduction [17].

A Multi-Agent System (MAS) [27] is a distributed system in which multiple
agents interact or collaborate together to perform a set of common and private tasks.
Both the correctness of interacting/collaborating behaviors and the privacy/security
of agents are important for MAS. Temporal logic can only specify some requirements
of interacting/collaborating behaviors, but cannot specify the requirements of pri-
vacy/security. Therefore, epistemic logic [23] is considered in model checking so that
the requirements of privacy/security can be specified and verified.

Epistemic logic comes from the philosophy field, and has been used in the com-
puter science field as a means of reasoning about the knowledge and belief of agents
in MAS [21, 28]. It is a modal logic concerned with agent-related reasoning and
offers a useful analysis of privacy/security. It has been used for checking agreement
protocols [26], security protocols [18] and other knowledge-related MAS [21]. By
adopting epistemic modalities as primitives, one can naturally express private and
collective (common or distributed) knowledge of agents. Computation Tree Logic
of Knowledge (CTLK) [28] is an extension of CTL with epistemic logic so that
it can specify the requirements of both the interaction/collaboration and the pri-
vacy/security of agents. Bit Transmission Protocol [29] and Dining Cryptographers
Protocol [14] can be viewed as an MAS and their temporal-epistemic requirements
can be specified by CTLK. Algorithms and tools have been developed for the related
model checking [7, 8, 21].

MCMAS [21] is a state-of-the-art model checker that can model MAS by ISPL
and verify CTLK based on Kripke model. However, it usually has three weaknesses:

1. programs written by ISPL are usually non-intuitive and have poor readability,
which is also pointed out in [8];

2. when ISPL models an MAS, it usually needs an environment agent to handle
interaction/collaboration of all agents, which results in poor scalability;

1176 L. He, G. Liu

3. it has a high time complexity when generating Kripke model to verify CTLK,
especially when using OBDD to compress the state space.

Petri net is a natural and intuitive modelling language to describe concurrent
or distributed system. There are some studies on Petri-nets-based model checking
for MAS [3, 4, 13, 22], but they only pay attention to the correctness of interact-
ing/collaborating behaviors but do not consider privacy/security. Therefore, in our
previous papers [19, 20], we defined Knowledge-oriented Petri Nets (KPN) to model
both the process of interaction/collaboration of multiple agents and their epistemic
evolutions. These epistemic evolutions are closely related to privacy/security of
MAS. We used CTLK [28] with two epistemic operators to specify the requirements
related to both interaction/collaboration and privacy/security, and defined similar
reachability graph to verify them. We gave the corresponding model checking al-
gorithms and developed a related tool. In this paper, we consider the other two
epistemic operators of CTLK, use OBDD [9, 10] as the symbolic representation of
similar reachability graph to alleviate the state explosion problem give some rules
to construct a fixed variable order of OBDD. Then we design their symbolic model
checking algorithms and improve our tool. Our model and method can well overcome
the above three weaknesses of MCMAS and experiments show their effectiveness.

The remainder of this paper is organized as follows. Section 2 introduces some
basic concepts of Petri nets. Section 3 introduces KPN and similar reachability
graph. Section 4 recalls OBDD and presents a symbolic approach to encode and
produce the similar reachability graph of a given KPN. Section 5 introduces the
syntax and semantics of CTLK. Section 6 proposes our model checking algorithms.
Section 7 introduces our tool and experiments. Section 8 concludes this paper.

2 PETRI NETS

Petri nets are recalled in this section. For more details, one can refer to [24] and [25].
N = {0, 1, 2, . . . } is the set of all non-negative integers. Given m ∈ N and m > 0,
we denote Nm = {1, 2, . . . ,m}.

A net is a 3-tuple N = (P, T, F) where P is a finite set of places, T a finite
set of transitions, F ⊆ (P × T) ∪ (T × P) a set of arcs, and P ∩ T = ∅. A net
may be seen as a directed bipartite graph. Generally, a transition is represented by
a rectangle and a place by a circle in a net graph. Given a net N = (P, T, F) and
a node x ∈ P ∪ T , •x = {y ∈ P ∪ T | (y, x) ∈ F} and x• = {y ∈ P ∪ T | (x, y) ∈ F}
represent the pre-set and post-set of x, respectively.

A marking of N = (P, T, F) is a mapping M : P → N where M(p) is the number
of tokens in place p. Place p is marked at M if M(p) > 0. Notice that a marking
is denoted as a set of marked places in this paper. For example, if the marking M
satisfies that place p1 has one token, place p2 has 1 tokens and other places have no
tokens, then it is written as M = p1 + p2 or M = {p1, p2}.

A net N with an initial marking M0 is a Petri net or net system and denoted as
(N,M0). Transition t is enabled atM if ∀p ∈• t: M(p) > 0, which is denoted asM [t⟩.

Verifying CTLK via KPN and OBDD 1177

Firing an enabled transition t yields a new marking M ′ and is denoted as M [t⟩M ′

whereM ′ satisfies thatM ′(p) = M(p)−1 if p ∈• t\t•; M ′(p) = M(p)+1 if p ∈ t•\•t;
and M ′(p) = M(p) otherwise. We call M as a predecessor of M ′. A marking Mk is
reachable from another markingM ifMk = M or there exists a non-empty transition
sequence σ = t1t2 . . . tk such that M [t1⟩M1[t2⟩ . . . ⟩Mk−1[tk⟩Mk. M [σ⟩Mk represents
that M reaches Mk after firing σ. The set of all markings reachable from M in
a net N is denoted as R(N,M).

The reachability graph of a Petri net is a 3-tuple ∆ = (M, T,F) where M =
R(N,M0) is the set of all reachable markings and F ⊆ M × T ×M is the set of
all directed edges such that (M, t,M ′) ∈ F iff M [t⟩M ′. In this paper, we omit
transition names on all directed edges because they are not related to our model
checking. Then (M,M ′) ∈ F iff ∃t ∈ T such that M [t⟩M ′.

A Petri net is safe if each place has at most one token at each reachable marking.
A transition t is dead at a marking M if ∀M ′ ∈ R(N,M): ¬M ′[t⟩. A marking M is
a deadlock if ∀t ∈ T , t is dead at M .

3 KNOWLEDGE-ORIENTED PETRI NETS

3.1 KPN

Definition 1 (KPN). A KPN is a 7-tuples Σ = (PS, PK , T, F,M0,A, L) where

1. (PS ∪ PK , T, F,M0) is a safe Petri net;

2. PS ∩ PK = ∅;
3. A = {a1, a2, . . . , am} is a set of names of agents;

4. L : PK → 2A is a labeling function.

A KPN is a special Petri net in which the epistemic evolution of each agent
is considered. For a KPN, PS is called as a set of state places and the under-
lying Petri net w.r.t. PS models the state transitions and interactions of multiple
agents; PK is called as a set of basic knowledge places, each p ∈ PK represents a ba-
sic knowledge obtained by one/multiple agents when it is marked and L(p) means
those agents who obtain the basic knowledge. Therefore, KPN can model both the
interaction/collaboration process of multiple agents and their epistemic evolutions.

In this paper, we use a modified version of bit transmission protocol [19] to illus-
trate KPN and similar reachability graph. The KPN in Figure 1 models this protocol
where the hollow circles are local state places, the solid circles are basic knowledge
places, and agents a1, a2 and a3 represent Senders 1, 2 and a Receiver, respectively.
First, two Senders first compete to deliver a bit (i.e., 0 or 1) to a Receiver (t1,1 or t2,1).
Second, the Receiver returns an acknowledgement once receiving a bit (t3,1 and t3,2).
Finally, the acknowledgement is received by the Sender who has delivered a bit (t1,2
or t2,2). Places p1,3, p1,4, p2,3, p2,4, p3,3 and p3,5 are basic knowledge places. A token
in p1,3 (respectively p2,3) means that Sender 1 (respectively Sender 2) has sent a bit.

1178 L. He, G. Liu

p1,1

 p1,2

 p1,3 {a1} p1,4 {a1}

p1,5

p2,1

p2,3 {a2} p2,4 {a2}

p2,2 p2,5

p3,1

p3,2 p3,4

t1,1 t1,2

t2,1 t2,2

t3,1 t3,2

p3,3 {a3}

p1 p2 p3

p3,5 {a3}

Figure 1. KPN modeling bit transmission protocol

A token in p1,4 (respectively p2,4) means that Sender 1 (respectively Sender 2) has
received an acknowledgement. A token in p3,3 (respectively p3,5) means that the
receiver has received a bit (respectively sent an acknowledgement).

3.2 Similar Reachability Graph

For marking M and a set of places P ⊆ PS ∪ PK in a KPN, M | P denotes the
projection ofM onto P , i.e., M | P = {p ∈ P |M(p) > 0}. For agent a, we use Pa to
represent those basic knowledge places w.r.t. agent a, i.e., Pa = {p ∈ PK | a ∈ L(p)}.
Obviously, PK =

⋃m
i=1 Pai . Then M | PK denotes the basic knowledge owned by all

agents at M and M | Pa denotes the basic knowledge owned by agent a at M .

Definition 2 (Similar reachability graph). Given a KPN Σ = (PS, PK , T, F,M0,A,
L) where A = {a1, a2, . . . , am}, its similar reachability graph ∆ = (M,F,∼a1 ,∼a2

, . . . ,∼am) is defined as follows:

1. (M, T,F) is the reachability graph of Petri net (PS ∪ PK , T, F,M0); and

2. ∀a ∈ A, ∼a⊆M×M is a similar relation w.r.t. agent a such that ∀M , M ′ ∈M,
M ∼a M

′ iff M | Pa = M ′ | Pa.

For each agent, a similar relation is constructed. If an agent owns the same basic
knowledge at two markings, then the two markings are similar from its epistemic
perspective. Obviously, a similar relation is reflexive, symmetric and transitive, i.e.,
it is an equivalence relation. Figures 2 a), 2 b) and 2 c) show the similar reachability
graph of the KPN in Figure 1 w.r.t. agents a1, a2 and a3, respectively. Here, those
markings similar w.r.t. one agent are represented in the same line width. For ex-
ample, there are 3 sets of markings similar w.r.t. agent a1 in Figure 2 a) and one is

Verifying CTLK via KPN and OBDD 1179

a) b) c)

Figure 2. The similar reachability graph of the KPN in Figure 1

{M0,M2,M4,M6,M8}, which means that agent a1 has no basic knowledge at these
markings. For agents a2 and a3, their similar relations are similar.

Given two equivalence relations ∼a and ∼b, we give ∼a ∪ ∼b, ∼a ∩ ∼b and
(∼a ∪ ∼b)

+, i.e., M(∼a ∪ ∼b)M
′ iff M ∼a M ′ or M ∼b M ′; M(∼a ∩ ∼b)M

′ iff
M ∼a M ′ and M ∼b M ′; M(∼a ∪ ∼b)

+M ′ iff ∃M1, M2, . . . , Mx ∈ M such that
M(∼a ∪ ∼b)M1, M1(∼a ∪ ∼b)M2, . . . , Mx(∼a ∪ ∼b)M

′. Consequently, ∼a ∩ ∼b

and (∼a ∪ ∼b)
+ are still equivalence relations; but ∼a ∪ ∼b is not necessarily

an equivalence relation because it is reflexive and symmetric but not necessarily
transitive. These operations of binary relation are important for the definitions of
epistemic operators in CTLK.

4 SYMBOLIC APPROACH OF PRODUCING SIMILAR
REACHABILITY GRAPH USING OBDD

For (similar) reachability graph, there is the state explosion problem. In this paper,
we use OBDD to handle this problem. This section first recalls OBDD [9, 10] and
then presents a symbolic approach to encode and produce the similar reachability
graph of a given KPN using OBDD. The markings, state transitions and similar
relations in a similar reachability graph can be symbolically modelled by Boolean
functions and then these functions are represented by OBDD. Therefore, we can
significantly reduce the storage space if OBDD has a good compressing effect. In
this paper, all Boolean functions are represented by OBDD.

4.1 Ordered Binary Decision Diagrams

OBDD is recalled in this section. For more details, one may refer to [9]. Here, we
only review some of its definitions for readability.

A Binary Decision Diagram (BDD) is a rooted, directed, and acyclic graph
with two sink nodes labelled by 0 and 1 that represent Boolean functions 0 and 1,
respectively. Each non-sink node is labelled with a Boolean variable υ and has two

1180 L. He, G. Liu

z1

(a)

y1

z2

z3

y2

y3

1 0

z1

z2

z3

y1

y2

y3

z2

z3 z3 z3

y1 y1 y1

y2

0 1

(b)
a)

z1

(a)

y1

z2

z3

y2

y3

1 0

z1

z2

z3

y1

y2

y3

z2

z3 z3 z3

y1 y1 y1

y2

0 1

(b)
b)

Figure 3. a) OBDD for function f3 = (z1 ∧ y1)∨ (z2 ∧ y2)∨ (z3 ∧ y3) in the variable order
z1 < y1 < z2 < y2 < z3 < y3; b) OBDD for function f3 = (z1 ∧ y1) ∨ (z2 ∧ y2) ∨ (z3 ∧ y3)
in the variable order z1 < z2 < z3 < y1 < y2 < y3

out-edges labelled by 1 (that represents then) and 0 (that represents else). Each
non-sink node represents a Boolean function corresponding to its 1-edge if υ = 1 or
a Boolean function corresponding to its 0-edge if υ = 0.

An OBDD is a BDD where all variables are totally ordered and each path from
source node to a sink node visits these variables in the ascending order. A Reduced
OBDD (ROBDD) is an OBDD where each node represents a distinct Boolean func-
tion and no variable node has identical 1-edge or 0-edge. ROBDD has some impor-
tant properties. It provides compact representations of Boolean functions and there
are efficient algorithms for performing all kinds of logical operations on ROBDD.
They are all based on the crucial fact that an ROBDD has a canonical representa-
tion of a Boolean function: given a fixed variable order, there is exactly one ROBDD
representing it for any Boolean function. Notice that we use the ROBDD technique
in this paper, but for readability we still call it as OBDD in the next content.

OBDD can encode large sets of states with small data structures and can enable
efficient manipulation of those sets. However, it is known that the size of an OBDD
for a Boolean function seriously depends on the chosen variable order [11] and an im-
proper variable order can still result in the node explosion problem, i.e., the number
of nodes in an OBDD grows exponentially with the number of variables. To illustrate
it, we consider a simple Boolean function fm = (z1∧y1)∨(z2∧y2)∨· · ·∨(zm∧ym) [1].
Figures 3 a) and 3 b) show the OBDD in a linear-size variable order and the OBDD
in an exponential-size variable order for m = 3, respectively. In Figure 3, solid lines

Verifying CTLK via KPN and OBDD 1181

mean that the values of the corresponding variables are 1 and dotted lines mean
that the values of the corresponding variables are 0.

To find an optimal variable order is an NP-hard problem [31], and thus a policy
of dynamically reordering variables is often taken. For example, MCMAS takes
such a policy but it often has a very high time complexity since it frequently looks
for a good compromise between continuous variable reordering and efficiency of
reducing memory consumption. In this paper, we use a fixed variable order instead
of dynamically reordering variables. Therefore, our method of producing a similar
reachability graph encoded by OBDD can save lots of time and space. In this paper,
we use the OBDD-package in the CUDD library [10] developed by Fabio Somenzi
at Colorado University.

4.2 Symbolic Approach of Producing Similar Reachability Graph

We now present our symbolic approach to encode and produce the similar reachabil-
ity graph of a given KPN using OBDD. Our approach improves the corresponding
one for bounded Petri nets [12] but we also need to encode similar relations. We
use OBDD and some of its operations to encode and produce all reachable mark-
ings, state transitions and similar relations in a similar reachability graph. These
OBDD operations include ·, +, − and ←. Operations ·, + and − can be viewed
as the intersection, union and subtraction of two sets, respectively. Boolean func-
tion f(X) | {x ← x′} means this Boolean function where variable x is replaced by
its primed copy x′. Later, our model checking algorithms also use another OBDD
operation ↾. Boolean function f(X) ↾ Y means this Boolean function where each
variable x ∈ X\Y are removed. For example, given f(x1, x2, x3) = x1 x2 x3+x1 x2 x3,
f(x1, x2, x3) ↾ {x1, x2} = x1 x2 + x1 x2.

Given a KPN where PS∪PK = {p1, p2, . . . , pn}, since it is safe, we can use a place
p to denote a Boolean variable and then a marking M is encoded by a Boolean
function composed of variables p1, p2, . . . , pn. For a Boolean function, if a place
variable does not occur then this function represents such all markings that the place
is marked or unmarked. Then true represents all possible markings composed of all
marked or unmarked places, p represents those possible markings where p is marked
and p represents those possible markings where p is unmarked. Then a markingM is
encoded by operation · of all these p or p. If M(p) = 1 then we choose p; otherwise,
we choose p. For example, if there is a KPN where P = {p1, p2, p3, p4}, then marking
M = {p1, p3} can be represented by p1 · p2 · p3 · p4 (or p1 p2 p3 p4 for short) which is
true only if p1 = p3 = 1∧p2 = p4 = 0. Similarly, a set of markings can be encoded by
operation + of the corresponding Boolean functions. For example, ifM1 = p1 p2 p3 p4
and M2 = p1 p2 p3 p4, then {M1,M2} = M1 +M2 = p1 p2 p3 p4 + p1 p2 p3 p4 = p1 p2 p4
which is true only if p1 = 1 ∧ p2 = p4 = 0 ∧ (p3 = 1 ∨ p3 = 0). Similarly, variables
p1, p2, . . . , pn are used to encode the current marking and their primed copies p′1,
p′2, . . . , p

′
n are used to encode the next marking; and then a relation between two

markings (e.g. state transition or similar relation) is encoded by operation · of the
corresponding Boolean functions.

1182 L. He, G. Liu

Based on OBDD, transitions can be fired at a set of markings rather than using
a traditional marking-per-marking basis. Given a subset Mx ⊆ M and a transition
t ∈ T , we give two functions: Enable(t,Mx) = {M ∈ Mx | M [t⟩} and Img(t,Mx) =
{M ∈ M | ∃M ′ ∈ Mx : M ′[t⟩M}. Based on the rules of enabling transitions in
Petri nets, we can calculate Enable(t,Mx), i.e., Enable(t,Mx) = Mx ·

∏
p∈•t p. In

this paper,
∏

represents successive · operation. For example, p1 · p2 · p3 =
∏3

i=1 pi.
Then we can calculate Img(t,Mx) based on the rules of firing transitions in Petri
nets. If Enable(t,Mx) = ∅, then Img(t,Mx) = ∅. Otherwise, we modify the values
of variables in Enable(t,Mx), i.e., p = p for each p ∈• t \ t•, p = p for each p ∈ t• \• t
(i.e., p becomes p due to p = p), and p is unchanged otherwise. Finally, the modified
result is Img(t,Mx).

Algorithm 1 Produce similar reachability graph encoded by OBDD

Input: KPN Σ = (PS ∪ PK , T, F,M0,A, L)
Output: Similar reachability graph ∆ = SRG(Σ) encoded by OBDD

M0 = true;
for (each pi ∈ PS ∪ PK) do

if (M0(p) > 0) then M0 = M0 · pi;
else M0 = M0 · pi;

Reached = From = M0;
repeat

for (each t ∈ T) do
From = From + Img(t,From);

New = From − Reached ; From = New ; Reached = Reached + New ;
until (New == 0);
M = Reached ; M′ = Reached |pi∈PS∪PK

{pi ← p′i};
F = M ·M′ ·

∑
t∈T

(∏
pi∈•t pi ·

∏
pj∈t• p

′
j ·
∏

pk /∈•t∪ t•(pk ≡ p′k)
)
;

for (each a ∈ A) do
∼a= M ·M′ ·

∏
pi∈Pa

(pi ≡ p′i);

return (M,F,∼a1 ,∼a2 , . . . ,∼am);

Based on Img(t,Mx), we give Algorithm 1 of producing the similar reachability
graph of a given KPN encoded by OBDD, where p ≡ p′ is true if and only if the
values of p and p′ are the same. First, M is efficiently calculated by using Img(t,Mx)
in a symbolic traversal algorithm. Second, we get M′ by renaming each variable
p ∈ PS ∪PK into its primed copy p′ in M. Finally, we use M and M′ to encode state
transition F and similar relation ∼ for each agent based on their definitions. For
each M ∈ M and M ′ ∈ M′, (M,M ′) ∈ F iff there is a transition ∃t ∈ T such that
pi is marked in M for each pi ∈ •t; p′j is marked in M ′ for each pj ∈ t•, and the
tokens of other places are the same for M and M ′; and (M,M ′) ∈∼a if and only if
the tokens of places in Pa are the same for M and M ′.

Verifying CTLK via KPN and OBDD 1183

In this paper, we use a fixed place order. We consider the structure of a KPN,
and propose some rules to construct this order. In OBDD, a marking or a set of
markings is encoded by a Boolean function composed of variables p1, p2, . . . , pn.
Firing a transition t will change the assignments of these places (i.e., p becomes p
or p becomes p) that belong to (•t∪ t•) \ (•t∧ t•). It will need more time for OBDD
to compute a new Boolean function if the distance between the two variables in
a variable order is longer. Therefore, we can combine the structure of Petri nets and
reasonably arrange the order of places.

Two places are dependent if there is a transition which affects them [30]. Then
we can conclude that the shorter the average distance between all dependent places
in a variable order is, the better effect of compacting the state space OBDD has.
Therefore, we propose the following rules:

1. For a subnet modelling an agent, dependent places should be as close as possible;

2. For the common places via which these subnets are connected, they should be
at the middle of places of these subnets; and

3. The unprimed variable p should be close to its primed variable p′.

Therefore, we can obtain a good variable order through these rules and our
experiments will evidence this idea. But for MCMAS, it is not easy to do so since its
modelling language ISPL does not have an obvious or direct structure representation.

5 CTLK

We use CTLK [28] as the specification language of temporal-epistemic requirements
in MAS. In general, when a kind of modelling language is used to describe MAS,
the syntax of CTLK is based on this language (e.g. ISPL and KPN) and its induced
model (e.g. Kripke model and similar reachability graph) is used to explain the
semantics of CTLK. In this paper, we use KPN as the model to describe MAS.
Then for CTLK, its syntax is based on KPN and its semantics is based on similar
reachability graph.

Definition 3 (Syntax of CTLK). Given a KPN Σ = (PS, PK , T, F,M0,A, L), the
syntax of CTLK is defined by the following existential normal form (ENF) expres-
sions:

ϕ ::= true | p | ¬ϕ | ϕ ∧ ϕ | EX ϕ | EG ϕ | E(ϕU ϕ) | Ka | EΓ ϕ | DΓ ϕ | CΓ ϕ

where p ∈ PS ∪ PK , a ∈ A and Γ ⊆ A.

Other operators can be derived from the above ones: deadlock
def
= ¬EX true;

ϕ1 ∨ ϕ2
def
= ¬(¬ϕ1 ∧ ¬ϕ2); ϕ1 → ϕ2

def
= ¬ϕ1 ∨ ϕ2; AX ϕ

def
= ¬EX ¬ϕ; EF ϕ

def
=

E(trueU ϕ); A(ϕ1 U ϕ2)
def
= ¬E(¬ϕ2 U (¬ϕ1∧¬ϕ2))∧¬EG(¬ϕ2); AGϕ

def
= ¬EF ¬ϕ;

AF ϕ
def
= A(trueU ϕ).

1184 L. He, G. Liu

Given a similar reachability graph ∆ = (M,F,∼a1 ,∼a2 , . . . ,∼am), a computation
starting from a marking M ∈ M is a maximal sequence of markings, i.e., π =
(M0,M1, . . .) such that M0 = M and ∀i ∈ N: (M i,M i+1) ∈ F. For an infinite
computation π = (M0,M1, . . .), we denote π(i) = M i for each i ∈ N. For a finite
computation π = (M0,M1, . . . ,Mn), π(i) = M i for each i ≤ n, and π(i) = ∅ for
each i > n. Π(M) denotes the set of all computations starting from M .

Since a KPN is safe, we can use a place p in PS ∪ PK to represent one atomic
proposition in CTLK. A marked place p means the value true of the corresponding
atomic proposition and otherwise the value false.

Definition 4 (Semantics of CTLK). Given a similar reachability graph ∆ = (M,F,
∼a1 ,∼a2 , . . . ,∼am), a marking M ∈M and a CTLK formula ϕ, (∆,M) |= ϕ denotes
that ϕ is true at M in ∆. ∆ can be omitted when no ambiguity takes place. The
relation |= is defined inductively as follows:

• M |= true;

• M |= p iff M(p) = 1;

• M |= ¬ϕ iff M ⊭ ϕ;

• M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2;

• M |= EX ϕ iff there exists π ∈ Π(M) such that π(1) ̸= ∅ ∧ π(1) |= ϕ;

• M |= EG ϕ iff there exists π ∈ Π(M) such that for all i ≥ 0, if π(i) ̸= ∅, then
π(i) |= ϕ;

• M |= E(ϕ1 U ϕ2) iff there exists π ∈ Π(M) and n ∈ N such that π(n) ̸=
∅ ∧ π(n) |= ϕ2 and π(j) |= ϕ1 for each j ∈ {0, 1, . . . , n− 1};

• M |= Ka ϕ iff ∀M ′ ∈M : M ′ ∼a M ⇒M ′ |= ϕ;

• M |= EΓ ϕ iff ∀M ′ ∈M : M ′ (⋃
a∈Γ ∼a

)
M ⇒M ′ |= ϕ;

• M |= DΓ ϕ iff ∀M ′ ∈M : M ′ (⋂
a∈Γ ∼a

)
M ⇒M ′ |= ϕ;

• M |= CΓ ϕ iff ∀M ′ ∈M : M ′ (⋃
a∈Γ ∼a

)+
M ⇒M ′ |= ϕ.

Definition 5 (Validity). A CTLK formula ϕ is valid in KPN Σ (denoted Σ |= ϕ)
iff its similar reachability graph ∆ satisfies (∆,M0) |= ϕ.

As mentioned above, CTLK is an extension of CTL with epistemic logic. From
Definition 4 we can see that the semantics of temporal operators are the same with
those of CTL [2, 15, 16]. Here, we only explain epistemic operators.

The semantics of Ka means that agent a can derive that ϕ is true at marking M
if and only if ϕ is true at each marking that has the same knowledge with M w.r.t.
agent a, i.e., from its epistemic perspective, there was no doubt that ϕ is true at M .

The semantics of EΓ means that each agent in a group of agents Γ can derive

that ϕ is true at marking M , i.e., ∀a ∈ Γ : M |= Ka ϕ. Obviously, Kaϕ
def
= E{a}ϕ.

The semantics of DΓ means that it is a distributed knowledge in a group of
agents Γ that ϕ is true at marking M , i.e., M |= KaΓ ϕ where aΓ is viewed as
a special agent which owns all basic knowledge of those agents in Γ.

Verifying CTLK via KPN and OBDD 1185

The semantics of CΓ means that it is a common knowledge in a group of agents Γ
that ϕ is true at marking M , i.e., ∀ai0 , ai1 , ai2 , . . . , ∈ Γ: M |= Kai0

ϕ∧Kai1

(
Kai0

ϕ
)
∧

Kai2

(
Kai1

(
Kai0

ϕ
))
∧ . . . , i.e., for each j ∈ N: M |= Kaij

(
Kaij−1

(
. . .
(
Kai0

ϕ
)))
⇒

M |= Kaij+1

(
Kaij

(
Kaij−1

(
. . .
(
Kai0

ϕ
))))

.

For a KPN, each agent can gain some basic knowledge when its basic knowledge
places are marked. Therefore, for each p ∈ Pa, M |= Ka p and M |= EL(p)p hold
iff M(p) = 1. For complex knowledge, we use CTLK to specify it and verify it
by model checking. For example in Figure 1, when Receiver has received a bit, he
knows that Sender 1 or Sender 2 sent it but cannot know who sent it. CTLK formula
ϕ1 = AG(p3,3 → (Ka3(p1,3 ∨ p2,3) ∧ ¬Ka3 p1,3 ∧ ¬Ka3 p2,3) specifies this case. Later,
our tool will check its validity.

6 MODEL CHECKING ALGORITHMS OF CTLK

Since every CTLK formula can be translated into its ENF expression [1], we only
consider the algorithms of verifying those formulas in Definition 3.

Our algorithms extend those of CTL in [16]. Given a KPN Σ and a CTLK
formula ϕ, the basic verifying procedure mainly includes three steps:

1. The similar reachability graph ∆ of Σ is produced by Algorithm 1;

2. The markings in ∆ satisfying ϕ (i.e., Sat(∆, ϕ)) are computed recursively;

3. It follows that Σ |= ϕ if M0 ∈ Sat(∆, ϕ).

Given a similar reachability graph ∆, Algorithm 2 describes a high-level struc-
ture of recursively computing Sat(∆, ϕ). The algorithms SatEX , SatEG, SatEU ,
SatK, SatE , SatD and SatC are described in Algorithms 3, 4, 5, 6, 7, 8 and 9, respec-
tively.

Algorithms 3, 4 and 5 are similar to our conference paper [19] and a main
difference is that this paper uses OBDD to compute the predecessors of markings in
a given set of markings (say X). Obviously, F · (X |pi∈PS∪PK

{pi ← p′i}) means these
state transitions {(M,M ′) ∈ F |M ′ ∈ X} so (F · (X |pi∈PS∪PK

{pi ← p′i})) ↾ PS ∪PK

means these predecessors of markings in X. Note that (F · (M |pi∈PS∪PK
{pi ←

p′i})) ↾ PS ∪ PK = (F ·M′) ↾ PS ∪ PK = F ↾ PS ∪ PK means these markings that are
not deadlocks, so M− (F ↾ PS ∪ PK) means these deadlocks.

Algorithms 6 and 9 are similar to our conference papers [19, 20] and a main
difference is that this paper uses OBDD to compute the markings similar to at least
one marking in a given set of markings (say X) w.r.t. an agent (say a). Obviously,
∼a ·(X |pi∈PS∪PK

{pi ← p′i}) means these similar relations {(M,M ′) ∈∼a|M ′ ∈ X}
so (∼a ·(X |pi∈PS∪PK

{pi ← p′i})) ↾ PS ∪PK means these markings similar to at least
one marking in X w.r.t. a.

Algorithm 7 shows the process of computing SatE(ϕ,Γ). Because it is not easy to
directly compute this set, we choose to compute its complement set, i.e., ¬SatE(ϕ,Γ).
First, we compute Sat(∆,¬ϕ) (say X). Second, we search for the markings that are

1186 L. He, G. Liu

Algorithm 2 Sat(∆, ϕ)

Input: Similar reachability graph ∆, CTLK formula ϕ
Output: {M ∈M | (∆,M) |= ϕ}
if (ϕ is true) then return M;

if (ϕ is a place) then return M · ϕ;
if (ϕ is ¬ϕ1) then return M− Sat(∆, ϕ1);

if (ϕ is ϕ1 ∧ ϕ2) then return Sat(∆, ϕ1) · Sat(∆, ϕ2);

if (ϕ is EX ϕ1) then return SatEX ϕ1;

if (ϕ is EG ϕ1) then return SatEG ϕ1;

if (ϕ is E(ϕ1 U ϕ2)) then return SatEU(ϕ1, ϕ2);

if (ϕ is Ka ϕ1) then return SatK(ϕ1, a);

if (ϕ is EΓ ϕ1) then return SatE(ϕ1,Γ);

if (ϕ is DΓ ϕ1) then return SatD(ϕ1,Γ);

if (ϕ is CΓ ϕ1) then return SatC(ϕ1,Γ);

Algorithm 3 SatEX(ϕ)

X = Sat(Γ, ϕ); Y = (F · (X |pi∈PS∪PK
{pi ← p′i})) ↾ PS ∪ PK ;

return Y ;

Algorithm 4 SatEG(ϕ)

X = Z = Sat(Γ, ϕ); Y = M;
while (X ̸= Y) do

Y = X; X = Z · (F · (X |pi∈PS∪PK
{pi ← p′i})) ↾ PS ∪ PK ;

Z1 = (M− (F ↾ PS ∪ PK)) · Z; Y1 = ∅;
while (Y1 ̸= Z1) do

Y1 = Z1; Z1 = Z1 + (Z · (F · (Z1 |pi∈PS∪PK
{pi ← p′i})) ↾ PS ∪ PK);

return Y = Y + Y1;

Algorithm 5 SatEU(ϕ1, ϕ2)

X = Sat(Γ, ϕ2); Z = Sat(Γ, ϕ1); Y = ∅;
while (X ̸= Y) do

Y = X; X = X + (Z · (F · (X |pi∈PS∪PK
{pi ← p′i})) ↾ PS ∪ PK);

return Y ;

Algorithm 6 SatK(ϕ, a)

X = Sat(∆,¬ϕ); Y = (∼a ·(X |pi∈PS∪PK
{pi ← p′i})) ↾ PS ∪ PK ;

return M− Y ;

Verifying CTLK via KPN and OBDD 1187

Algorithm 7 SatE(ϕ,Γ)

X = Y = Sat(∆,¬ϕ); X = X |pi∈PS∪PK
{pi ← p′i};

for (each a ∈ Γ) do
Y = Y + (∼a ·X) ↾ PS ∪ PK ;

return M− Y ;

Algorithm 8 SatD(ϕ,Γ)

Y = Sat(∆,¬ϕ); Y =
∏

a∈Γ ∼a ·(Y |pi∈PS∪PK
{pi ← p′i}) ↾ PS ∪ PK ;

return M− Y ;

similar to at least one marking in X w.r.t. one agent a ∈ Γ, i.e., (∼a ·(X |pi∈PS∪PK

{pi ← p′i})) ↾ PS∪PK . The union of these markings is ¬SatE(ϕ,Γ). The complement
of this set is SatE(ϕ,Γ).

Algorithm 8 shows the process of computing SatD(ϕ,Γ). Similar to Algorithm 7,
we also compute its complement set, i.e., ¬SatD(ϕ,Γ). First, we compute Sat(∆,¬ϕ)
(say X). Second, we search for the markings that are similar to at least one marking
in X w.r.t. each agent a ∈ Γ. Obviously,

∏
a∈Γ ∼a ·(X |pi∈PS∪PK

{pi ← p′i}) means
these similar relations {(M,M ′) | X ∈ M ′ and (M,M ′) ∈∼a for each a ∈ Γ} so∏

a∈Γ ∼a ·(X |pi∈PS∪PK
{pi ← p′i})) ↾ PS ∪ PK means these markings similar to at

least one marking in X w.r.t. each agent a ∈ Γ, i.e., ¬SatD(ϕ,Γ). The complement
of this set is SatD(ϕ,Γ).

The complexity of our model checking algorithms consists of two parts. First,
a similar reachability graph needs to be generated, but the number of markings
possibly grows exponentially even though KPN is safe. Therefore, we use OBDD
to encode these states instead of explicitly representing them. Second, we ver-
ify a CTLK formula ϕ based on the similar reachability graph. Given an un-
compressed similar reachability graph with n markings, k pairs of state transi-
tions and w pairs of similar relations, our CTLK model-checking problem can
be determined in time O((n + k + w) · |ϕ|) where |ϕ| is the number of atomic
propositions/operators in ϕ. When we use OBDD to encode the similar reachabil-
ity graph and verify ϕ, the complexity of the related algorithm depends on the
size of OBDD, the operations of OBDD and |ϕ|. Certainly, at the worst case
the size of OBDD still grows exponentially [31] if the chosen variable order is

Algorithm 9 SatC(ϕ,Γ)

X = Sat(∆,¬ϕ); Y = M; Z = ∅;
while (X ̸= Y) do

Y = X; Z = X |pi∈PS∪PK
{pi ← p′i}

for (each a ∈ Γ) do
X = X + (∼a ·Z) ↾ PS ∪ PK ;

return M− Y ;

1188 L. He, G. Liu

(a)

(b)

(c)
a)

(a)

(b)

(c)

b)

(a)

(b)

(c)
c)

Figure 4. a) The specification of the KPN in Figure 1; b) the specification of ϕ1; c) the
verification result

terrible, but lots of studies [12, 21] show that OBDD can work well at most of
cases.

7 TOOL AND EXPERIMENTS

Based on our algorithms, we develop a model checker KPNer written in C++ pro-
gramming language. After inputting a KPN and some CTLK formulas, our tool
can output their verification results. This KPN and these formulas are stored in
a .ppn file and our tool can read them. Figure 4 a) shows the specification of
the KPN in Figure 1, (b) shows the specifications of formulas ϕ1 = AG(p3,3 →
(Ka3(p1,3 ∨ p2,3) ∧ ¬Ka3 p1,3 ∧ ¬Ka3 p2,3), and (c) shows the verification result.

In what follows, we use Dining Cryptographers Protocol [14] as the benchmark
to show the performance of KPNer, and compare KPNer and MCMAS. In this
protocol, n (n ≥ 3) cryptographers share a meal around a circular table, and either
one of them or their employer pays for the meal. They would like to discover whether

Verifying CTLK via KPN and OBDD 1189

one of them paid money without revealing the identity of this cryptographer. To
this end, there is a coin between any two cryptographers. The coin is randomly
tossed and the result can only be seen by its left and right cryptographers. This
protocol requires that each cryptographer must say “same” or “different” of his
left and right coins. If a cryptographer paid money, he tells a lie. Otherwise, he
tells the truth. If there are odd “different”, then there must be one cryptographer
paid for the meal because it is impossible that all cryptographers tell the truth but
there are odd “different”. On the other hand, if there are even “different”, then the
employer paid money. Therefore, after all cryptographers say, every cryptographer
can know whether one of them paid, but they cannot know who paid in case one of
them did pay. Of course, they know their employer paid in case none of them did
pay.

We verify the following two epistemic requirements which were also considered
in [7, 8, 21]:

1. when each cryptographer has said, everyone either knows that their employer
paid (i.e., no cryptographer paid), or knows that one cryptographer paid but he
(not payer) cannot know who paid; and

2. when each cryptographer has said and no cryptographer paid, it is a common
knowledge in all cryptographers that their employer paid.

Due to symmetry, we only consider cryptographer 1 when verifying the first require-
ment. The two requirements can be formalised by the following formulas:

ϕ2 = AG

((
n∧

i=1

cisaid ∧ ¬c1paid

)
→

(
Kc1 epaid ∨

(
Kc1

(
n∨

i=2

cipaid

)
∧

n∧
i=2

¬Kc1 c
i
paid

)))

ϕ3 = AG
((∧n

i=1 c
i
said ∧

∧n
i=1 ¬cipaid

)
→ CA epaid

)
where n is the number of cryptog-

raphers, cisaid represents that Cryptographer i said “same” or “different”, cipaid (re-
spectively epaid) represents that Cryptographer i (respectively the employer) paid,
c1 represents Cryptographer 1 and A represents all cryptographers.

The KPN in [19] models this protocol but it has a high degree of concurrency
and the state space explodes seriously with increasing the number of cryptographers.
Therefore, in our experiments we modify the structure of this KPN as follows:

1. each cryptographer first sees his left and right coins, then pays or does not pay
money, and finally says “same” or “different”;

2. all cryptographers execute the above processes in turn.

In other words, we reduce unnecessary concurrent structures as much as possible.
Obviously, the modified KPN also conforms to this protocol. The results show
that ϕ2 and ϕ3 are both valid in this protocol. Here, we only show the performance of
KPNer by increasing the number of cryptographers. Table 1 shows the experimental
results.

1190 L. He, G. Liu

Table 1 shows that the fixed variable order of OBDD generated by our rules has
a satisfying performance. For example, when the number of cryptographers is 100,
OBDD in this order only uses 17 390 nodes to encode 1.007× 1033 markings so that
it only uses 4.108 × 108 bytes in the whole model checking process. Notice that
CUDD cannot count up the number of markings in an OBDD when the OBDD
is composed of more than 1 024 Boolean variables. Therefore, when the number
of cryptographers is more than 100 (the number of places > 1 024), we only know
the number of nodes of an OBDD but cannot know the number of markings in
the OBDD. Here, we use INF (infinite) to represent these numbers and |OBDD| to
represent the number of nodes in the OBDD encoding M.

From Table 1, we can see that the process of producing similar reachability
graph spends much more time than the process of verifying CTLK formulas. For
example, when the number of cryptographers is 160, it spends almost 1.1 hours
to produce the similar reachability graph but it only spends 59.155 s to verify ϕ2

and ϕ3. Due to the good performance of our variable order, OBDD has a satisfying
effect of compressing the state space. Therefore, we can efficiently produce similar
reachability graph and thus KPNer achieves a good performance. Even when the
number of cryptographers is 200, KPNer can still produce the similar reachability
graph with about 1064–1067 markings in 2.2 hours, and verify ϕ2 and ϕ3 in 100 s.
Obviously, KPNer is able to handle larger number of cryptographers. Note that
all experiments are conducted on a PC equipped with Intel(R) Core(TM) i5-2 400
CPU@3.10GHz and RAM@4.00G.

We compare KPNer with the state-of-the-art CTLK model checker MCMAS.
Table 2 shows the experimental results. Here, any run that exceeds 3 hours but
cannot output a result is reported as a timeout. To present a fair comparison, the
two model checkers both use the same CUDD version 2.5.1 [10]. The experimental
results (i.e., time and space) of KPNer and MCMAS are for the whole model checking
process, i.e. both generating the induced model (Kripke model or similar reachability
graph) and verifying CTLK formulas. The results show that KPNer is much more
efficient and needs less memory than MCMAS. MCMAS can only verify this protocol
for the case of 36 cryptographers at most. Besides, the performance of MCMAS is
unstable. For example, when the number of cryptographers is 24 or 25, MCMAS
runs more than 3 hours but does not output any result. However, when the number
is 26 or 27, MCMAS can output the results in 100 s. Fortunately, the performance
of KPNer keeps stable. The time spent by KPNer slowly increases with increasing
the number of cryptographers.

For MCMAS, it spends too much time to generate the induced model (i.e.,
Kripke model) from an ISPL program. We think that there are at least two rea-
sons:

1. each state in Kripke model is global so that it needs to first generate the local
state of each agent and then combine these local states to generate a global
state according to its environment agent. Additionally, for each agent, when
generating a new local state from a given local state, the agent considers not

Verifying CTLK via KPN and OBDD 1191

N
o.

(n
)
of

S
im

il
ar

T
im

e
to

M
em

or
y

C
ry
p
to
-

K
P
N

R
ea
ch
ab

il
it
y

V
er
if
y

(b
y
te
s)

gr
ap

h
er
s

G
ra
p
h

C
T
L
K

(s
)

|P
|(
10
n
+
1)
|T
|(
12
n
)
|F
|(
87
n
−
2)

|M
|

|O
B
D
D
|(
17
6n
−
21
0)

T
im

e
(s
)

10
10
1

12
0

86
8

75
78
3

1
55
0

0.
56
1

0.
04
6
4.
54
4
×
10

7

20
20
1

24
0

1
73
8

1.
61
5
×

10
8

3
31
0

3.
15

0.
20
3
5.
04
5
×
10

7

30
30
1

36
0

2
60
8
2.
51
3
×
10

1
1

5
07
0

10
.0
15

0.
67

6.
93
×
10

7

40
40
1

48
0

3
47
8
3.
45
2
×
10

1
4

6
83
0

27
.6
12

1.
68
5

9.
39
×
10

7

50
50
1

60
0

4
34
8
4.
43
6
×
10

1
7

8
59
0

65
.0
67

3.
04
2
1.
29
1
×
10

8

60
60
1

72
0

5
21
8
5.
46
5
×
10

2
0

10
35
0

13
4.
76
9

4.
99
2
1.
71
7
×
10

8

70
70
1

84
0

6
08
8

6.
54
×
10

2
3

12
11
0

22
6.
37
3

7.
47
2
2.
21
2
×
10

8

80
80
1

96
0

6
95
8
7.
66
5
×
10

2
6

13
87
0

35
9.
22
3

10
.6
55

2.
8
×
10

8

90
90
1

1
08
0

7
82
8
8.
83
9
×
10

2
9

15
63
0

54
6.
79
8

13
.4
01

3.
47
6
×
10

8

10
0

1
00
1

1
20
0

8
69
8
1.
00
7
×
10

3
3

17
39
0

78
0.
13

16
.9
57

4.
21
2
×
10

8

11
0

1
10
1

1
32
0

9
56
8

IN
F

19
15
0
1
14
0.
38
3

23
.7
42

5.
03
×
10

8

12
0

1
20
1

1
44
0

10
42
8

IN
F

20
91
0
1
57
0.
89
9

28
.7
19

5.
93
4
×
10

8

13
0

1
30
1

1
56
0

1
13
08

IN
F

22
67
0
1
95
9.
57
5

34
.8
19

6.
90
2
×
10

8

14
0

1
40
1

1
68
0

1
21
78

IN
F

24
43
0

2
51
9.
01

41
.1
38

7.
95
2
×
10

8

15
0

1
50
1

1
80
0

1
30
48

IN
F

26
19
0
3
30
5.
62
9

50
.8
56

8.
99
4
×
10

8

16
0

1
60
1

1
92
0

1
39
18

IN
F

27
95
0
3
94
2.
36
4

59
.1
55

1.
02
6
×
10

9

17
0

1
70
1

2
04
0

1
47
88

IN
F

29
71
0
4
81
7.
21
6

66
.2
23

1.
15
1
×
10

9

18
0

1
80
1

2
16
0

1
56
58

IN
F

31
47
0
5
69
5.
31
6

67
.1
43

1.
28
×
10

9

19
0

1
90
1

2
28
0

1
65
28

IN
F

33
23
0
6
21
9.
77
5

78
.9
37

1.
42
4
×
10

9

20
0

2
00
1

2
40
0

1
73
98

IN
F

34
99
0
7
98
6.
22
1

99
.6
23

1.
57
6
×
10

9

T
ab

le
1.

E
x
p
er
im

en
ta
l
re
su
lt
s
of

K
P
N
er

fo
r
d
iff
er
en
t
n
u
m
b
er
s
of

cr
y
p
to
gr
ap

h
er
s

1192 L. He, G. Liu

No. (n) of
Crypto- KPNer MCMAS
graphers

No. of Memory Time No. of Memory Time
Markings (bytes) (s) States (bytes) (s)

10 75 783 4.544× 107 0.608 45 056 1.729× 107 3.803
11 167 943 4.911× 107 0.764 98 304 1.676× 107 1.599
12 368 647 5.166× 107 0.967 212 992 1.803× 107 0.81
13 802 823 5.369× 107 1.217 458 752 2.032× 107 1.462
14 1.737× 106 4.912× 107 1.418 983 040 2.306× 107 2.347
15 3.736× 106 4.985× 107 1.715 2.097× 106 2.36× 107 2.348
16 7.995× 106 5.015× 107 1.95 4.456× 106 2.302× 107 11.351
17 1.704× 107 5.176× 107 2.262 9.437× 106 1.405× 108 23.538
18 3.618× 107 5.467× 107 2.59 1.992× 107 1.023× 109 11 971.3
19 7.655× 107 4.776× 107 2.933 4.194× 107 2.482× 108 420.914
20 1.615× 108 5.045× 107 3.369 8.808× 107 8.83× 107 18.494
21 3.397× 108 5.322× 107 3.822 1.845× 108 2.724× 108 1 137.51
22 7.13× 108 5.824× 107 4.398 3.859× 108 6.909× 108 3 321.47
23 1.493× 109 5.926× 107 4.913 8.053× 108 1.998× 108 273.433
24 3.121× 109 6.053× 107 5.537 Timeout
25 6.51× 109 6.056× 107 6.395 Timeout
26 1.356× 1010 6.085× 107 7.004 7.248× 109 9.038× 107 50.229
27 2.819× 1010 6.392× 107 7.612 1.503× 1010 1.26× 108 96.39
28 5.852× 1010 6.172× 107 8.376 3.114× 1010 4.177× 108 5 695.47
29 1.213× 1011 6.833× 107 9.579 6.442× 1010 6.213× 108 15 707.7
30 2.513× 1011 6.93× 107 10.716 Timeout
31 5.197× 1011 6.924× 107 12.105 2.749× 1011 3.365× 108 6 366.01
32 1.074× 1012 7.127× 107 13.431 5.669× 1011 1.785× 108 199.838
33 2.216× 1012 7.372× 107 14.959 1.168× 1012 6.545× 108 37 996.9
34 4.57× 1012 7.672× 107 15.864 Timeout
35 9.415× 1012 7.853× 107 18.579 Timeout
36 1.938× 1013 8.176× 107 19.858 1.017× 1013 5.584× 108 27 315.8
37 3.986× 1013 8.431× 107 22.167 Timeout
38 8.191× 1013 8.72× 107 24.476 Timeout
39 1.683× 1014 9.06× 107 26.848 Timeout
40 3.452× 1014 9.39× 107 30.607 Timeout

Table 2. Experimental results comparing KPNer and MCMAS on dining cryptographers
protocol

Verifying CTLK via KPN and OBDD 1193

only its actions but also others’ actions due to the synchronous semantics of
ISPL. Therefore, it spends much time to generate a new state from a given
state. Fortunately, KPNer only needs to check preset and postset of a tran-
sition when generating a new state from a given state, which can save much
time;

2. MCMAS dynamically reorders variables when encoding and producing Kripke
model via OBDD. It needs much time to find a satisfying variable order. This
is also the reason why the performance of MCMAS is unstable. Fortunately,
KPNer can utilize our rules to construct a fixed variable order so that much
time can be saved too. These rules utilize the structure of KPN so its perfor-
mance is also stable.

There are other two CTLK model checkers MCK [7] and MCTK [8]. As shown
in [21], MCMAS has the best performance among them. Therefore, in this paper
we only compare KPNer with MCMAS.

8 CONCLUSION

In the conference versions [19, 20] of this paper, we defined KPN and similar reach-
ability graph, and used them to verify CTLK in which only two epistemic operators
K and C were considered. In this paper, we consider the other two epistemic opera-
tors E and D in CTLK, use OBDD to encode a similar reachability graph and give
some rules to construct a fixed variable order of OBDD so as to alleviate the state
explosion problem well. As shown in our experiments, our model checking method
is much more efficient than the state-of-the-art CTLK model checker MCMAS. Our
future work includes:

1. we consider simplifying CTLK formulas and thus continually optimize our algo-
rithms;

2. we explore more complex epistemic operators to verify more complex epistemic
properties;

3. we plan to give a heuristic method of automatically generating a fixed variable
order of OBDD; and

4. we extend KPN from safe Petri nets to bounded Petri nets to simulate MAS
more precisely.

Acknowledgement

This paper is supported in part by the National Nature Science Foundation of China
(Nos. 62032019 and 62172299), in part by the Shanghai Municipal Science and
Technology Major Project (No. 2021SHZDZX0100) and in part by the Fundamental
Research Funds for the Central Universities.

1194 L. He, G. Liu

REFERENCES

[1] Baier, C.—Katoen, J. P.: Principles of Model Checking. MIT Press, 2008.

[2] Wang, J.—Tepfenhart, W.: Formal Methods in Computer Science. Chapman
and Hall/CRC Press, 2019.

[3] Deng, Y.—Wang, J.—Tsai, J. J. P.—Beznosov, K.: An Approach for
Modeling and Analysis of Security System Architectures. IEEE Transactions on
Knowledge and Data Engineering, Vol. 15, 2003, No. 5, pp. 1099–1119, doi:
10.1109/tkde.2003.1232267.

[4] Wang, J.—Li, D.: Resource Oriented Workflow Nets and Workflow Resource Re-
quirement Analysis. International Journal of Software Engineering and Knowledge
Engineering, Vol. 23, 2013, No. 5, pp. 677–693, doi: 10.1142/s0218194013400135.

[5] Alur, R.—Henzinger, T.A.—Mang, F.Y.C.—Qadeer, S.—Rajamani,
S.K.—Tasiran, S.: MOCHA: Modularity in Model Checking. In: Hu, A. J.,
Vardi, M.Y. (Eds.): Computer Aided Verification (CAV 1998). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 1427, 1998, pp. 521–525, doi:
10.1007/bfb0028774.

[6] Vardi, M.Y.: An Automata-Theoretic Approach to Linear Temporal Logic. In:
Moller, F., Birtwistle, G. (Eds.): Logics for Concurrency. Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 1043, 1996, pp. 238–266, doi: 10.1007/3-
540-60915-6 6.

[7] Gammie, P.—van der Meyden, R.: MCK: Model Checking the Logic of Know-
ledge. In: Alur, R., Peled, D.A. (Eds.): Computer Aided Verification (CAV 2004).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 3114, 2004,
pp. 479–483, doi: 10.1007/978-3-540-27813-9 41.

[8] Su, K.—Sattar, A.—Luo, X.: Model Checking Temporal Logics of Know-
ledge via OBDDs. The Computer Journal, Vol. 50, 2007, No. 4, pp. 403–420, doi:
10.1093/comjnl/bxm009.

[9] Bryant, R. E.: Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, Vol. C-35, 1986, No. 8, pp. 677–691, doi:
10.1109/tc.1986.1676819.

[10] Somenzi, F.: CUDD: CU Decision Diagram Package – Release 2.5.1. Available at:
http://vlsi.colorado.edu/fabio/CUDD, 2012.

[11] Rudell, R.: Dynamic Variable Ordering for Ordered Binary Decision Diagrams.
Proceedings of 1993 International Conference on Computer Aided Design (ICCAD),
1993, pp. 42–47, doi: 10.1109/iccad.1993.580029.

[12] Pastor, E.—Cortadella, J.—Roig, O.: Symbolic Analysis of Bounded Petri
Nets. IEEE Transactions on Computers, Vol. 50, 2001, No. 5, pp. 432–448, doi:
10.1109/12.926158.

[13] Celaya, J. R.—Desrochers, A.A.—Graves, R. J.: Modeling and Analysis of
Multi-Agent Systems Using Petri Nets. Proceedings of 2007 IEEE International Con-
ference on Systems, Man and Cybernetics, 2007, pp. 1439–1444, doi: 10.1109/ic-
smc.2007.4413960.

https://doi.org/10.1109/tkde.2003.1232267
https://doi.org/10.1142/s0218194013400135
https://doi.org/10.1007/bfb0028774
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/3-540-60915-6_6
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1093/comjnl/bxm009
https://doi.org/10.1109/tc.1986.1676819
http://vlsi.colorado.edu/fabio/CUDD
https://doi.org/10.1109/iccad.1993.580029
https://doi.org/10.1109/12.926158
https://doi.org/10.1109/icsmc.2007.4413960
https://doi.org/10.1109/icsmc.2007.4413960

Verifying CTLK via KPN and OBDD 1195

[14] Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Re-
cipient Untraceability. Journal of Cryptology, Vol. 1, 1988, No. 1, pp. 65–75, doi:
10.1007/bf00206326.

[15] Clarke, E.M.—Emerson, E.A.: Design and Synthesis of Synchronization Skele-
tons Using Branching Time Temporal Logic. In: Kozen, D. (Ed.): Logics of Programs
(Logics of Programs 1981). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 131, 1981, pp. 52–71, doi: 10.1007/bfb0025774.

[16] Clarke, E.M.—Grumberg, O.—Peled, D.A.: Model Checking. MIT Press,
1999.

[17] Clarke, E.M.—Grumberg, O.—Minea, M.—Peled, D.: State Space Reduc-
tion Using Partial Order Techniques. International Journal on Software Tools for
Technology Transfer, Vol. 2, 1999, No. 3, pp. 279–287, doi: 10.1007/s100090050035.

[18] Halpern, J. Y.—Pucella, R.: Modeling Adversaries in a Logic for Security Pro-
tocol Analysis. In: Abdallah, A. E., Ryan, P., Schneider, S. (Eds.): Formal Aspects
of Security (FASec 2002). Springer, Berlin, Heidelberg, Lecture Notes in Computer
Science, Vol. 2629, 2003, pp. 115–132, doi: 10.1007/978-3-540-40981-6 11.

[19] He, L.—Liu, G.: Model Checking CTLK Based on Knowledge-Oriented
Petri Nets. Proceedings of the 21st International Conference on High Perfor-
mance Computing and Communications (HPCC), 2019, pp. 1139–1146, doi:
10.1109/hpcc/smartcity/dss.2019.00161.

[20] He, L.—Liu, G.: Verifying Computation Tree Logic of Knowledge via the
Similar Reachability Graphs of Knowledge-Oriented Petri Nets. Proceedings of
the 2020 39th Chinese Control Conference (CCC), 2020, pp. 5026–5031, doi:
10.23919/ccc50068.2020.9188719.

[21] Lomuscio, A.—Qu, H.—Raimondi, F.: MCMAS: An Open-Source Model
Checker for the Verification of Multi-Agent Systems. International Journal on
Software Tools for Technology Transfer, Vol. 19, 2017, No. 1, pp. 9–30, doi:
10.1007/s10009-015-0378-x.

[22] Lopes, B.—Benevides, M.—Haeusler, E.H.: Reasoning about Multi-Agent
Systems Using Stochastic Petri Nets. In: Bajo, J. et al. (Eds.): Trends in Practi-
cal Applications of Agents, Multi-Agent Systems and Sustainability. Springer, Cham,
Advances in Intelligent Systems and Computing, Vol. 372, 2015, pp. 75–86, doi:
10.1007/978-3-319-19629-9 9.

[23] Meyer, J.-J. C.—van der Hoek, W.: Epistemic Logic for AI and Computer
Science. Cambridge University Press, 2004.

[24] Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, Vol. 77, 1989, No. 4, pp. 541–580, doi: 10.1109/5.24143.

[25] Reisig, W.: Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies. Springer, Berlin, Heidelberg, 2013, doi: 10.1007/978-3-642-33278-4.

[26] van Oorschot, P.: Extending Cryptographic Logics of Belief to Key Agreement
Protocols. Proceedings of the 1st ACM Conference on Computer and Communications
Security (CCS ’93), 1993, pp. 232–243, doi: 10.1145/168588.168617.

[27] Weiss, G. (Ed.): Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, 1999.

https://doi.org/10.1007/bf00206326
https://doi.org/10.1007/bfb0025774
https://doi.org/10.1007/s100090050035
https://doi.org/10.1007/978-3-540-40981-6_11
https://doi.org/10.1109/hpcc/smartcity/dss.2019.00161
https://doi.org/10.23919/ccc50068.2020.9188719
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/978-3-319-19629-9_9
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1145/168588.168617

1196 L. He, G. Liu

[28] Penczek, W.—Lomuscio, A.: Verifying Epistemic Properties of Multi-Agent
Systems via Bounded Model Checking. Proceedings of the 2nd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS ’03), 2003,
pp. 209–216, doi: 10.1145/860575.860609.

[29] Fagin, R.—Halpern, J. Y.—Moses, Y.—Vardi, M.Y.: Reasoning about
Knowledge. MIT Press, 1995.

[30] Noack, A.: A ZBDD Package for Efficient Model Checking of Petri Nets. Ph.D.
Thesis, BTU Cottbus, Department of Computer Science, 1999 (in German).

[31] Heiner, M.—Rohr, C.—Schwarick, M.: MARCIE – Model Checking and Reach-
ability Analysis Done Efficiently. In: Colom, J.M., Desel, J. (Eds.): Applications
and Theory of Petri Nets and Concurrency (PETRI NETS 2013). Springer, Berlin,
Heidelberg, Lecture Notes in Computer Science, Vol. 7927, 2013, pp. 389–399, doi:
10.1007/978-3-642-38697-8 21.

[32] Nouri, A.—Raman, B.—Bozga, M.—Legay, A.—Bensalem, S.: Faster Statis-
tical Model Checking by Means of Abstraction and Learning. In: Bonakdarpour, B.,
Smolka, S.A. (Eds.): Runtime Verification (RV 2014). Springer, Cham, Lecture Notes
in Computer Science, Vol. 8734, 2014, pp. 340–355, doi: 10.1007/978-3-319-11164-
3 28.

Leifeng He received his B.Sc. degree from the University of
Shanghai for Science and Technology, Shanghai, China, in 2015.
He is currently working toward his Ph.D. degree in the Depart-
ment of Computer Science and Technology, School of Electron-
ics and Information Engineering, Tongji University, Shanghai,
China. His research interests include model checking, Petri net,
workflow, multi-agent systems, and epistemic logic.

Guanjun Liu received his Ph.D. degree in computer software
and theory from the Tongji University, Shanghai, China, in 2011.
He was Post-Doctoral Research Fellow with the Singapore Uni-
versity of Technology and Design, Singapore, from 2011 to 2013.
He was Post-Doctoral Research Fellow with the Humboldt Uni-
versity of Berlin, Germany, from 2013 to 2014, funded by the
Alexander von Humboldt Foundation. In 2013, he joined the
Department of Computer Science of the Tongji University as As-
sociate Professor, and now he serves there as Professor. He has
(co-)authored over 100 papers including 23 ones in IEEE/ACM

Transactions and two books. His research interests include Petri net theory, model check-
ing, Web service, workflow, discrete event systems, machine learning and credit card fraud
detection.

https://doi.org/10.1145/860575.860609
https://doi.org/10.1007/978-3-642-38697-8_21
https://doi.org/10.1007/978-3-319-11164-3_28
https://doi.org/10.1007/978-3-319-11164-3_28

