208,450 research outputs found
A Frequency-Reconfigurable Monopole Antenna with Switchable Stubbed Ground Structure
A frequency-reconfigurable coplanar-waveguide (CPW) fed monopole antenna using switchable stubbed ground structure is presented. Four PIN diodes are employed in the stubs stretching from the ground to make the antenna reconfigurable in three operating modes: a single-band mode (2.4-2.9 GHz), a dual-band mode (2.4-2.9 GHz/5.09-5.47 GHz) and a triple-band mode (3.7-4.26 GHz/5.3-6.3 GHz/8.0-8.8 GHz). The monopole antenna is resonating at 2.4 GHz, while the stubs produce other operating frequency bands covering a number of wireless communication systems, including WLAN, WiMAX, C-band, and ITU. Furthermore, an optimized biasing network has been integrated into this antenna, which has little influence on the performance of the antenna. This paper presents, compares and discusses the simulated and measured results
Recommended from our members
A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss
Dimeric porphyrin molecules have great potential as donor materials for high performance bulk heterojunction organic solar cells (OSCs). Recently reported dimeric porphyrins bridged by ethynylenes showed power conversion efficiencies (PCEs) of more than 8%. In this study, we design and synthesize a new conjugated dimeric D-A porphyrin ZnP2BT-RH, in which the two porphyrin units are linked by an electron accepting benzothiadiazole (BT) unit. The introduction of the BT unit enhances the electron delocalization, resulting in a lower highest occupied molecular orbital (HOMO) energy level and an increased molar extinction coefficient in the near-infrared (NIR) region. The bulk heterojunction solar cells with ZnP2BT-RH as the donor material exhibit a high PCE of up to 10% with a low energy loss (Eloss) of only 0.56 eV. The 10% PCE is the highest for porphyrin-based OSCs with a conventional structure, and this Eloss is also the smallest among those reported for small molecule-based OSCs with a PCE higher than 10% to date
Recommended from our members
Behavior of axially loaded circular stainless steel tube confined concrete stub columns
A stainless steel tube confined concrete (SSTCC) stub column is a new form of steel-concrete composite column in which the stainless steel tube without bearing the axial load directly is used to confine the core concrete. It could take the advantages of both the stainless steel tube and the confined concrete columns. This paper presents the experimental investigation of circular SSTCC stub columns subjected to axial load. Meanwhile, comparative tests of the circular concrete-filled stainless steel tubes and circular hollow stainless steel tubes were also conducted. The experimental phenomena of specimens are introduced in detail and the experimental results are analyzed. Through the investigation of axial stress and circumference stress on the stainless steel tube, the interaction behavior between stainless steel tube and core concrete is studied. The experimental results showed that the stainless steel tube provides better confinement to the concrete core, thus results the compressive capacity increased obviously comparing with unconfined concrete. The load-carrying capacity of SSTCC stub columns is higher than that of concrete-filled stainless steel tubes. An equation to calculate the load-carrying capacity of SSTCC stub columns was proposed, the results based on calculation are close to the experimental results
Coupling Josephson qubits via a current-biased information bus
Josephson qubits without direct interaction can be effectively coupled by
sequentially connecting them to an information bus: a current-biased large
Josephson junction treated as an oscillator with adjustable frequency. The
coupling between any qubit and the bus can be controlled by modulating the
magnetic flux applied to that qubit. This tunable and selective coupling
provides two-qubit entangled states for implementing elementary quantum logic
operations, and for experimentally testing Bell's inequality.Comment: 10 pages, 1 figure. submitte
Thermal and non-thermal emission in the Cygnus X region
Radio continuum observations detect non-thermal synchrotron and thermal
bremsstrahlung radiation. Separation of the two different emission components
is crucial to study the properties of diffuse interstellar medium. The Cygnus X
region is one of the most complex areas in the radio sky which contains a
number of massive stars and HII regions on the diffuse thermal and non-thermal
background. More supernova remnants are expected to be discovered. We aim to
develop a method which can properly separate the non-thermal and thermal radio
continuum emission and apply it to the Cygnus X region. The result can be used
to study the properties of different emission components and search for new
supernova remnants in the complex. Multi-frequency radio continuum data from
large-scale surveys are used to develop a new component separation method.
Spectral analysis is done pixel by pixel for the non-thermal synchrotron
emission with a realistic spectral index distribution and a fixed spectral
index of beta = -2.1 for the thermal bremsstrahlung emission. With the new
method, we separate the non-thermal and thermal components of the Cygnus X
region at an angular resolution of 9.5arcmin. The thermal emission component is
found to comprise 75% of the total continuum emission at 6cm. Thermal diffuse
emission, rather than the discrete HII regions, is found to be the major
contributor to the entire thermal budget. A smooth non-thermal emission
background of 100 mK Tb is found. We successfully make the large-extent known
supernova remnants and the HII regions embedded in the complex standing out,
but no new large SNRs brighter than Sigma_1GHz = 3.7 x 10^-21 W m^-2 Hz^-1
sr^-1 are found.Comment: 9 pages, 5 figures, accepted by A&A. The quality of the figures is
reduced due to file size limit of the websit
Understanding the different rotational behaviors of No and No
Total Routhian surface calculations have been performed to investigate
rapidly rotating transfermium nuclei, the heaviest nuclei accessible by
detailed spectroscopy experiments. The observed fast alignment in No
and slow alignment in No are well reproduced by the calculations
incorporating high-order deformations. The different rotational behaviors of
No and No can be understood for the first time in terms of
deformation that decreases the energies of the
intruder orbitals below the N=152 gap. Our investigations reveal the importance
of high-order deformation in describing not only the multi-quasiparticle states
but also the rotational spectra, both providing probes of the single-particle
structure concerning the expected doubly-magic superheavy nuclei.Comment: 5 pages, 4 figures, the version accepted for publication in Phys.
Rev.
- …