217 research outputs found

    On Global Attractivity of a Class of Nonautonomous Difference Equations

    Get PDF
    We mainly investigate the global behavior to the family of higher-order nonautonomous recursive equations given by y n p ry n−s / q φ n y n−1 , y n−2 , . . . , y n−m y n−s , n ∈ N 0 , with p ≄ 0, r, q > 0, s, m ∈ N and positive initial values, and present some sufficient conditions for the parameters and maps φ n : R m → R , n ∈ N 0 , under which every positive solution to the equation converges to zero or a unique positive equilibrium. Our main result in the paper extends some related results from the work of Gibbons et al

    Knowledge mapping and research hotspots of immunotherapy in renal cell carcinoma: A text-mining study from 2002 to 2021

    Get PDF
    BackgroundRenal cell carcinoma (RCC) is one of the most lethal urological malignancies, and because early-stage RCC is asymptomatic, many patients present metastatic diseases at first diagnosis. With the development of immunotherapy, the treatment of RCC has entered a new stage and has made a series of progress. This study mainly outlines the knowledge map and detects the potential research hotspots by using bibliometric analysis.MethodsPublications concerning RCC immunotherapy from 2002 to 2021 in the Web of Science Core Collection were collected. Visualization and statistical analysis were mainly performed by freeware tools VOSviewer, CiteSpace, R software, and Microsoft Office Excel 2019.ResultsA total of 3,432 papers were collected in this study, and the annual number of papers and citations showed a steady growth trend. The United States is the leading country with the most high-quality publications and is also the country with the most international cooperation. The University of Texas MD Anderson Cancer Center is the most productive organization. The Journal of Clinical Oncology is the highest co-cited journal, and Brian I. Rini is both the most prolific author and the author with the largest centrality. The current research hotspots may be focused on “immune checkpoint inhibitors (ICIs),” “PD-1,” and “mammalian target of rapamycin.”ConclusionImmunotherapy has a bright future in the field of RCC treatment, among which ICIs are one of the most important research hotspots. The main future research directions of ICI-based immunotherapy may focus on combination therapy, ICI monotherapy, and the development of new predictive biomarkers

    Activity and expression of ADP-glucose pyrophosphorylase during rhizome formation in lotus (Nelumbo nucifera Gaertn.)

    Get PDF
    Additional file 7: Figure S6. Comparison of NnAGPS against AGPS of other species

    Primary Clinical Evaluation of Photodynamic Therapy With Oral Leukoplakia in Chinese Patients

    Get PDF
    Background: Photodynamic therapy (PDT) has demonstrated promising results in the treatment of oral leukoplakia. This study evaluated the clinical efficacy and side effects of PDT in the treatment of Chinese patients with oral leukoplakia.Methods: Twenty-nine patients with oral leukoplakia were enrolled in this study, including patients with both homogenous and non-homogenous lesions and various dysplastic tissues. All patients received PDT using a 632 nm laser at 500 mW/cm2 power density at a dosage of 90–180 J/cm2 and with aminolevulinic acid (ALA) used as a photosensitizer. A fixing and restricting complex as well as high laser power density for PDT in oral cavity was applied.Results: An overall response rate of 86.2% was achieved in this study, including 55.2% complete remission and 31.0% partial remission. The only adverse events observed in subjects were transient local ulcer and pain. It is observed the PDT utilizing ALA showed strong effectiveness in patients with moderate to severe dysplasia, as less treatment time per cm2 of lesion is required.Conclusion: Topic ALA-PDT is effective to treat oral leukoplakia, especially for that with the presence of dysplasia. A fixing and restricting complex as well as high laser power density for PDT in oral cavity should be considered as an optimal choice

    Metal–Organic Framework MIL-101(Fe) Nanoparticles Decorated with Ag Nanoparticles for Regulating the Photocatalytic Phenol Oxidation Pathway for Cr(VI) Reduction

    Get PDF
    Photocatalysis is a promising technology to treat dilute phenol–Cr(VI) mixture, where photoinduced electrons are commonly thought of as the main active species for Cr(VI) reduction. However, it generally depends on the surface adsorption to achieve efficient electron transfer. Meanwhile, the possible contribution of reductive quinone derivatives oxidized from phenol to Cr(VI) reduction has been rarely explored. The key is to explicitly understand the relation between the phenol oxidation pathway and Cr(VI) reduction. Herein, Ag/AgCl/MIL-101(Fe) prepared by directly loading Ag nanoparticles on MIL-101(Fe) was applied to the joint treatment of phenol and Cr(VI). The role of quinone derivatives in reducing Cr(VI) was revealed by excluding the surface adsorption. During the phenol oxidation, ‱OH radicals were more consumed in the initial stage for the ring opening of phenol. Meanwhile, 1O2 evolved from ‱O2– gradually caused the accumulation of reductive quinone intermediates, which dramatically accelerated the Cr(VI) reduction afterward. This study demonstrates the significance of controlling the evolution process of active oxygen species for the joint photocatalytic treatment of phenol–Cr(VI) mixture

    Genome-wide annotation and comparative analysis of cuticular protein genes in the noctuid pest \u3cem\u3eSpodoptera litura\u3c/em\u3e

    Get PDF
    Insect cuticle is considered an adaptable and versatile building material with roles in the construction and function of exoskeleton. Its physical properties are varied, as the biological requirements differ among diverse structures and change during the life cycle of the insect. Although the bulk of cuticle consists basically of cuticular proteins (CPs) associated with chitin, the degree of cuticular sclerotization is an important factor in determining its physical properties. Spodoptera litura, the tobacco cutworm, is an important agricultural pest in Asia. Compared to the domestic silkworm, Bombyx mori, another lepidopteran whose CP genes have been well annotated, S. litura has a shorter life cycle, hides in soil during daytime beginning in the 5th instar and is exposed to soil in the pupal stage without the protection of a cocoon. In order to understand how the CP genes may have been adapted to support the characteristic life style of S. litura, we searched its genome and found 287 putative cuticular proteins that can be classified into 9 CP families (CPR with three groups (RR-1, RR-2, RR-3), CPAP1, CPAP3, CPF, CPFL, CPT, CPG, CPCFC and CPLCA), and a collection of unclassified CPs named CPH. There were also 112 cuticular proteins enriched in Histidine residues with content varying from 6% to 30%, comprising many more His-rich cuticular proteins than B. mori. A phylogenetic analysis between S. litura, M. sexta and B. mori uncovered large expansions of RR-1 and RR-2 CPs, forming large gene clusters in different regions of S. liturachromosome 9. We used RNA-seq analysis to document the expression profiles of CPs in different developmental stages and tissues of S. litura. The comparative genomic analysis of CPs between S. litura and B. moriintegrated with the unique behavior and life cycle of the two species offers new insights into their contrasting ecological adaptations

    The Epitope Study on the SARS-CoV Nucleocapsid Protein

    Get PDF
    The nucleocapsid protein (N protein) has been found to be an antigenic protein in a number of coronaviruses. Whether the N protein in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is antigenic remains to be elucidated. Using Western blot and Enzyme-linked Immunosorbent Assay (ELISA), the recombinant N proteins and the synthesized peptides derived from the N protein were screened in sera from SARS patients. All patient sera in this study displayed strong positive immunoreactivities against the recombinant N proteins, whereas normal sera gave negative immunoresponses to these proteins, indicating that the N protein of SARS-CoV is an antigenic protein. Furthermore, the epitope sites in the N protein were determined by competition experiments, in which the recombinant proteins or the synthesized peptides competed against the SARS-CoV proteins to bind to the antibodies raised in SARS sera. One epitope site located at the C-terminus was confirmed as the most antigenic region in this protein. A detailed screening of peptide with ELISA demonstrated that the amino sequence from Codons 371 to 407 was the epitope site at the C-terminus of the N protein. Understanding of the epitope sites could be very significant for developing an effective diagnostic approach to SARS

    Construction, Complete Sequence, and Annotation of a BAC Contig Covering the Silkworm Chorion Locus

    Get PDF
    The silkmoth chorion was studied extensively by F.C. Kafatos’ group for almost 40 years. However, the complete structure of the chorion locus was not obtained in the genome sequence of Bombyx mori published in 2008 due to repetitive sequences, resulting in gaps and an incomplete view of the locus. To obtain the complete sequence of the chorion locus, expressed sequence tags (ESTs) derived from follicular epithelium cells were used as probes to screen a bacterial artificial chromosome (BAC) library. Seven BACs were selected to construct a contig which covered the whole chorion locus. By Sanger sequencing, we successfully obtained complete sequences of the chorion locus spanning 871,711 base pairs on chromosome 2, where we annotated 127 chorion genes. The dataset reported here will recruit more researchers to revisit one of the oldest model systems which has been used to study developmentally regulated gene expression. It also provides insights into egg development and fertilization mechanisms and is relevant to applications related to improvements in breeding procedures and transgenesis
    • 

    corecore