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Highlights

e In total, 287 cuticular protein genes are annotated in Spodoptera litura genome.
Most RR-1 and His-rich RR-2 CPs form a major cluster in S. /itura chromosome 9
Histidine-rich RR-2 CPs are greatly expanded in S. /itura compared to Bombyx mori.
RR-1 CP genes are mostly conserved among S. litura, B. mori, and Manduca sexta.
His-rich RR-2 CP genes form species-specific clades in phylogenetic analysis.
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Spodoptera litura

Abstract

Insect cuticle is considered an adaptable and versatile building material with roles in
the construction and function of exoskeleton. Its physical properties are varied, as the
biological requirements differ among diverse structures and change during the life
cycle of the insect. Although the bulk of cuticle consists basically of cuticular proteins
(CPs) associated with chitin, the degree of cuticular sclerotization is an important
factor in determining its physical properties. Spodoptera litura, the tobacco cutworm, is
an important agricultural pest in Asia. Compared to the domestic silkworm, Bombyx
mori, another lepidopteran whose CP genes have been well annotated, S. /itura has a
shorter life cycle, hides in soil during daytime beginning in the 5™ instar and is exposed
to soil in the pupal stage without the protection of a cocoon. In order to understand
how the CP genes may have been adapted to support the characteristic life style of S.
litura, we searched its genome and found 287 putative cuticular proteins that can be
classified into 9 CP families (CPR with three groups (RR-1, RR-2, RR-3), CPAPI,
CPAP3, CPF, CPFL, CPT, CPG, CPCFC and CPLCA), and a collection of unclassified
CPs named CPH. There were also 112 cuticular proteins enriched in Histidine residues

with content varying from 6% to 30%, comprising many more His-rich cuticular



41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

proteins than B. mori. A phylogenetic analysis between S. litura, M. sexta and B. mori
uncovered large expansions of RR-1 and RR-2 CPs, forming large gene clusters in
different regions of S. /itura chromosome 9. We used RNA-seq analysis to document
the expression profiles of CPs in different developmental stages and tissues of S. litura.
The comparative genomic analysis of CPs between S. litura and B. mori integrated
with the unique behavior and life cycle of the two species offers new insights into their

contrasting ecological adaptations.

1. Introduction

Insect cuticle must provide an effective barrier from the natural environment.
Consequently, its physical properties, such as thickness, stiffness, strength, elasticity
and color, show large variations at different metamorphic stages and in different
anatomical regions. Cuticles have a common fundamental structure, consisting of a
procuticle composed of a filamentous chitin structure within a protein matrix covered
by an epicuticle consisting of lipids and protein above which there is a dense cuticulin
lamina (Locke, 2001). The variation in physical properties of cuticle is partly due to
different degrees of cross-linking and hardening occurring during the process of
sclerotization, whereby phenolic material is incorporated into the CPs and/or other
cross-links are formed. Additionally, numerous CPs are identified in all insect species
studied, and their number and features are quite different among diverse species (Willis

et al., 2012).
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Information about the CPs of various insects and their underlying genes has been
obtained at the transcriptome and protein levels in the past few decades (Andersen,
2000; Baton et al., 2009; Dittmer et al., 2015; Dong et al., 2016; Futahashi. et al., 2008;
Gu and Willis, 2003; He et al., 2007; Pan et al., 2018). With the improvement of
sequencing technology, more and more genomic information for insect CPs has
become available, with many thousands of CP coding genes accumulated in sequence
databases. Many CPs have been identified by their conserved protein sequence motifs.
Andersen et al. (1995), Willis (2010) and Willis et al. (2012) have defined several CP
families. The most abundant family of CPs contains the Rebers and Riddiford
Consensus (R&R Consensus), which in an extended form has been shown to bind
chitin (Dong et al., 2016; Rebers and Willis, 2001; Tang et al., 2010; Togawa et al.,
2007; Togawa et al., 2004). Three distinct forms of this consensus have been classified
as RR-1, RR-2 and RR-3 (Andersen, 1998; Andersen, 2000). The other families with
conserved motifs are CPs with a 44 amino acid motif (CPF), CPF-like in the conserved
C-terminal region (CPFL), the Tweedle motif (CPT), alanine-rich CPs of low
complexity (CPLCA), CPs of low complexity with two invariant glycine residues in
the conserved domain (CPLCG), CPs of low complexity with an invariant tryptophan
in the conserved domain (CPLCW), proline-rich CPs of low complexity (CPLCP), CPs
with well-conserved cysteine residues (CPCFC), a glycine-rich CP (CPG), and analogs

to peritrophins (CPAP1 and CPAP3).



81

82

83

84

85

86

87

88

&9

90

91

92

93

94

95

96

97

98

99

100

Spodoptera litura (Lepidoptera, Noctuidae) is an important agricultural pest
distributed in the tropical and subtropical areas of Asia. Compared with the domestic
silkworm, Bombyx mori, S. litura has a shorter life cycle, although it has one more
larval instar (Fig. 1). In S. litura, instars L2-L5 are shorter than L1, whereas in B. mori,
larval stages following L1 take increasingly longer times. Moreover, from the 5th
instar S. /itura hides in the soil during the daytime, comes out from the soil in the
evening to eat crops throughout the night and then goes back into the soil with
daybreak. Further, instead of residing in a protective cocoon from pupation until adult
eclosion like B. mori, S. litura stays in the soil from the wandering stage until the moth
emerges. This exposure to soil requires CPs to form a more protective cuticle for
protection against abrasion and fungal and bacterial infection compared with B. mori. It
is also informative to compare S. /itura with M. sexta, a close relative of B. mori that

stays underground during pupal and pharate adult stages.

In this study, we annotated CP genes based on the recently published complete
genome sequence of S. /itura (Cheng et al., 2017). Combined with transcriptome
analysis, we then estimated what different kinds of CPs contribute to different types of
cuticles among various tissues and in different metamorphic stages. In addition,
comparative genomics and phylogenetic analysis among Lepidoptera provided
information on how CP genes evolved to adapt to the different ecological niches of

each of these three species.
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2. Materials and Methods

2.1 Annotation of cuticular protein genes

To predict putative CP genes of S. litura, reported sets of lepidopteran CPs were
collected from KAIKObase (http://sgp.dna.affrc.go.jp/KAIKObase/) and the NCBI
Reference Sequence database (https://www.ncbi.nlm.nih.gov/genbank/). CP genes
were predicted for the S. litura genome assembly (Cheng et al., 2017) using
TBLASTN (E-value <10”) and BLASTP in the non- redundant GenBank database.
Predicted CP genes were further examined by HMMER3 search (cutoff E-value =
0.001) using the Pfam database to confirm conserved domains and subsequently
classified into 9 families based on conserved motifs with the help of an online tool

(http://bioinformatics.biol.uoa.gr/CutProtFam-Pred/) (Ioannidou et al., 2014). The

annotation sequences were deposited at GenBank under BioProject accession

PRINA344815.

2.2 Phylogenetic tree construction

A total of 199 RR-1 and 361 RR-2 CDS sequences from S. litura, B. mori, and M. sexta
were aligned using ClustalW in MEGAG6 (Tamura et al., 2013). The tree was

constructed using the Maximum Likelihood method based on the Jukes-Cantor model
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(Jukes and cantor, 1969). A bootstrap consensus tree was inferred from 1000 replicates

(Felsenstein, 1985). Adobe Illustrator CS6 was used for editing and drawing the trees.

For the CPFL family, 17 sequences from S. litura, B. mori, and M. sexta were used
for phylogenetic tree construction. The sequences were aligned using the program
ClustalW in MEGAG (Tamura et al., 2013). Trees were constructed using the

Neighbor-Joining method (Nei, 1987), and gaps were treated by pairwise deletion.

2.3 Insect rearing, RNA library preparation, and RNA-Seq

S. litura (Ishihara inbred strain) was reared on artificial diet at 25°C under a 12h light/
12h dark cycle as described previously (Cheng et al., 2017), and RNA-Seq libraries
were prepared from different developmental stages. For 1* and 2" instar larvae (L1D2
and L2D2), RNA was extracted from the whole body of second-day larvae. For 3™ to
5™ (L3D2, L4D2 and L5D2) instar samples, RNA was derived from epidermis of
second-day larvae. For the 6™ instar and wandering stages (L6D2 and W), epidermal
RNA samples were collected from second day larvae in the daytime sleeping (D) phase
and nighttime feeding phase (N). Although other tissues were removed carefully with
tweezers under a ZEISS Stemi 2000 microscope (ZEISS, Germany), small amounts of
muscle, fat body or trachea might have contaminated the libraries. RNA samples from
epidermis and wing were extracted separately from 2" (P-2), 6" (P-6), 9" and 12th-day
pupae (P-9 and P-12: pharate adults). RNA isolation, library construction, sequencing

and analysis of transcripts were carried out as described in Cheng et al. (2017). The
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RNA-seq data are deposited in the Sequence Read Archive database under SRA

accession: PRINA498147 (https://www.ncbi.nlm.nih.gov/sra/PRINA498147). The

Log, (FPKM+0.01) (fragments per kilobase per million fragments mapped) value was

used for making the heat maps.

3. Results and Discussion

3.1 Annotation of cuticular proteins

As shown in Table 1, 287 putative CP coding genes (Supplementary Table 1) were
predicted and classified into eight CP families: CPR subdivided into three groups,
(RR-1, RR-2 and RR-3), Tweedle, CPF, CPFL, CPLCA, CPCFC, CPAP1, CPAP3 and
Glycine-rich (CPQG). In addition, a collection of unclassified CPs was named CPH

following Futahashi et al. (2008).

Among the 3 R&R consensus groups used to subdivide the CPR family in S. litura,
63 RR-1 protein genes and 129 RR-2 protein genes were identified with
CutProtFam-Pred, and one RR-3 protein gene was identified by manual annotation

based on its similarity to RR-3 proteins in B. mori.

CPAPI1 and CPAP3 families, which contain one or three peritrophin A-type chitin-
binding domains, are expressed only in cuticle-forming tissues (Jasrapuria et al., 2010).
Thirteen CPAPIs and 9 CPAP3s were annotated in the S. /itura genome (Table 1)

(Tetreau et al., 2015).
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The CPLCA family is defined by the presence of the retinin domain (pfam04527)
and richness in alanine residues, varying from 13-26% (Cornman and Willis, 2009).
Four CPLCA genes (SI_Aki-270, 271, 272 and 273) which formed a gene cluster in S.
litura chromosome 28 (Chr28) were annotated. Two CPs, named BmorCPH6 and
BmorCPH?7 by Futahashi et al. (2008) in B. mori, were related to CPLCA by homology
search. This is the first time CPLCAs, originally described in Anopheles gambiae

(Cornman and Willis, 2009; Willis et al., 2012), were found in Lepidoptera.

CPF has a conserved region with 44 amino acids (Togawa et al., 2007). One putative
CP gene belonging to the CPF family in the S. litura genome (SWUSI0111680) was
identified which we named SI_Aki-CPF. Seven CPFL genes, which have a conserved
C-terminal region similar to CPF (Togawa et al., 2007), were found. All of the CPFL
genes together with two other CPG genes (SI_Aki-235 and 242) formed a cluster on
Chr25. This genomic structure was similar to B. mori, in which three CPFL genes
(BmorCPFL2, BmorCPFL3 and BmorCPFL4) and two CPG genes (BmorCPG23 and
BmorCPG42) form a gene cluster on Chr23. In addition, S/ _Aki-235 and S| _Aki-242
were orthologous to BmorCPG23 and BmorCPG42, respectively.

We identified five genes with a Tweedle motif, among which S/ Aki-292, 293 and

294 formed a cluster on ChrZ; the other two CPT genes were not linked to other CPs.

The CPG family contains GG repeats but does not have any definite motif described

in other CP families (Futahashi. et al., 2008; Willis et al., 2012). However, although



178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

some glycine-rich cuticular proteins also had an R&R Consensus or Tweedle motif
(i.e., SI_Aki-008 (RR-1), SI_Aki-185 (RR-2), and SI_Aki-34 (CPT)), we left them in

their well defined families. In S. litura, 28 putative CP genes were classified as CPGs.

Futahashi et al. (2008) classified a group of 34 proteins as CPH which stands for
cuticular protein, hypothetical, among which we assigned BmorCPH6 and 7 to CPLCA
and BmorCPH1 to CPCFC. They all have signal peptides and some sequence similarity
with known CP genes or with the AAP (A/V) motif often found in CPs (Futahashi. et
al., 2008; Magkrioti et al., 2004). Twenty-six putative CP genes which showed
sequence similarity with 31 already known CPH proteins in B. mori were classified as
CPH in §. litura. Most of them had signal peptides; additionally, the AAP (A/V) motif
was found in 20 CPH proteins. Only 6 of these had sequence similarity with already

known CPH proteins in B. mori.

3.2 Characterization of histidine—rich CPs

The amino acid composition of the 287 CPs revealed 112 His-rich CPs in which
histidine residues ranged from 6.00-30.14% (Fig. 2). Interestingly, most His-rich CPs
belonged to the RR-2 family, which is common to both B. mori and S. litura. B. mori
has one extremely high His-rich CP, BmorCPR 152, of 45%, while the orthologous CP
with the highest His content in S. /itura is S1_Aki-166 with 30.14%. Figure 3 shows a
large expansion of His-rich CPs of the RR-2 family in the S. litura genome. As

Andersen and Roepstorff (2007) stated, histidine and several other amino acid residues

10
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in CPs could be involved in cuticular adduct formation based on biochemical analysis
of the cuticular hydrolysates from different cuticular types of M. sexta, desert locust
Schistocerca gregaria, and yellow mealworm, Tenebrio molitor (Andersen, 2007,
Andersen and Roepstorff, 2007; James L.Kerwin, 1999; Kerwin, 1999; SO Andersen
1997). EM immunolocalization utilized by Vannini and Willis (2017) support the
hypothesis about the deployment of RR-1 and RR-2 localization first proposed by
Andersen (1998). Namely, the RR-1 CPs are mostly found in soft cuticle like
inter-segmental membranes, whereas RR-2s are restricted to hard cuticles in 4.
gambiae (Vannini and Willis, 2017). Histidino-B-dopamine is the dominating adduct in
hard cuticles like those of adult beetle cuticle, lepidopteran pupae and dipteran puparia
(Andersen, 2008). Consistent with these reports is that His-rich CPs were mostly found
in RR-2, but not RR-1 CPs of S. litura.

3.3 Major clusters of CPR genes in S. litura

Compared to B. mori which has a cluster of CPR genes on chromosome 22, major
expansions of S. /itura CPR genes derived from this family were on S. /itura Chr9.
Figure 3 shows that 34 RR-1 (S/-4ki-48 - 80) genes and 82 RR-2 (SI-Aki-86, 88 -94,
96-169) genes were present as two large clusters located on different regions of Chr9.
Intriguingly, all of the RR-2 CP members belonged to the cluster encoding His-rich
CPs, whereas none of the 34 RR-1 CPs in the large cluster on Chr9 were His-rich.
Chr22 in B. mori also has the orthologs of these RR-1 genes, but none of them were
found to be His-rich (Fig. 3). Although much smaller than S. /itura, there was a

11
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separate His-rich RR-2 CP cluster (BmorCPR79-129) on Chr22 in B. mori. Thirteen
RR-1 (SI-4ki-001 - 013) genes were also localized on S. litura Chrl as a cluster

(Supplementary Fig. 1). Their orthologs in B. mori also formed a cluster on Chr9.

3.4 Phylogenetic analysis of S. litura, B. mori and M. sexta CPs

To compare the S. litura CPs with B. mori and M. sexta CPs, phylogenetic trees of
RR-1 and RR-2 CPs were constructed separately (Fig. 4). A single species clade was
very rare in the RR-1 tree. Although a small number of RR-1 CP genes were expanded
in comparison with B. mori, more than half of them showed one-to-one correspondence
among the three lepidopteran species. SI_Aki-2, 3, 4, 5 and 6 and MsCPR13, 174, 175,
176 and 177 formed separate clades, which corresponded to BmorCPR13 (black star in
Fig. 4A). Another small species-specific RR-1 CP clade was observed (thick bar in Fig.

4A).

In sharp contrast to the situation with RR-1s, more than half of the RR-2 CPs formed
species-specific clades (Fig. 4B), indicating species-specific expansions by gene
duplication events. Intriguingly, all CP members of S. litura, M. sexta and B. mori
belonging to large species specific clades (green branch in Fig. 4B) were His-rich.
Twenty-five RR-2 CPs (S1_Aki-100-108, SI_Aki-110-117, S1_Aki-122, 124, 127, 129,
132, 134 136) formed the biggest S. litura specific clade (Blue star in Fig.4B), all of
which belonged to the RR-2 CP gene cluster in chr9. BmorCPR152, MsCPR152,

MsCPR153 and S1_Aki-166, which had the highest His-residue content in each species,

12
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made a single clade (red star in Fig.4B), indicating that this highest His CP is
conserved and may play a common role in some specific structure among the three
Lepidoptera. Five of the CPFLs (S1_Aki-236, 237, 238, 239, 240) formed a clade in S.

litura (Supplementary Fig. 2).

3.5 Transcript abundance of CPs

We conducted RNA-Seq analysis to study the transcript distribution of CP genes in
various developmental stages and tissues. In total, transcriptional evidence was
obtained for 283 of the 287 annotated CPs (see Supplementary Table 2 for numbers of
genes from each CP group expressed per library). Transcripts were found for a
maximum of 233 CP genes in the 2" instar larvae and a minimum of 94 CP genes in
the epidermis of the 6:day pupa (Fig. 5A). The pattern of transcript levels of different
CP groups (Fig. 5B) showed dynamic changes in epidermis from larval to pupal stages
(Supplementary Table 3 for the total FPKM value for CP groups in each library). The
transcript pattern of RR-1 CPs contrasted extremely compared to RR-2 CPs (Fig. 5B).
Most CP transcripts in larval epidermis were derived from RR-/ CP genes whereas
RR-2 transcripts predominated in pharate adults. The difference in transcript pattern
between RR-1 and RR-2 genes was consistent with published reports that the RR-1/
transcripts are much more abundant in soft and flexible cuticles typical of larvae than

in hard cuticles, whereas RR-2 transcripts are associated with hard structures typical of

13
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adults (Dittmer et al., 2015; Ettershank, 1964 ; Futahashi. et al., 2008; Vannini and
Willis, 2017).

The transcripts of CPG and CPH amount to a large percentage in pupal and pharate
adult stages, despite their small numbers of genes compared with the CPR family
(CPG 16-22; CPH 10-21; CPR 38-151) (Fig. 5A,B). In B. mori, transcripts from CPG
genes are also reported to be present in some hard cuticles such as pheromone gland,
compound eye and maxillary galea (Futahashi. et al., 2008). Most CPHs contain AAP
(A/V) repeats which might cause a protein to fold into a more or less regular helix,
leading to an elastin-like structure which is easily and reversibly deformed by external
forces (Andersen, 1995). Transcripts of CPH genes were abundant in pupal epidermis
and wing, especially in early pupal epidermis (Fig. 5B). Further study is needed to

determine the function of the CPGs and CPHs in cuticle formation.

Wolfgang and Riddiford (1986) reported changes of CP synthesis correlated with
changes of lamellar structure in M. sexta cuticle during the final larval instar when they
dig into soil in preparation for pupation. Our RNA-Seq analysis of S. /itura suggested
that epidermal cuticular layers of 6" larval instar would be mainly composed of RR-1s
as well as CPAPs, whereas, based on transcript abundance, CPH and CPGs together
with CPAPs would contribute to the cuticular layers of the wandering stage (Fig. 5A;
Fig. 6). Especially, CPHs encoded by S/ _Aki-260 (Supplementary Fig. 4) and SI_Aki-
261 (Supplementary Fig. 5) were extremely highly expressed in the wandering stage at
night compared to the daytime. Nevertheless, the ratios of expressed gene numbers
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among CP gene families did not change so much in epidermis between 6" larval instar

and wandering stage (Fig. 5B).

The heat map of transcripts for each CP gene in S. litura showed several
characteristic patterns (Fig. 6). The transcripts from RR-/ and CPG genes were
continuously and highly abundant in epidermis of larval stages (Fig. 6A). However,
transcripts from some RR-1 genes (Fig. 6B) that were abundant in larval epidermis
were also found in the early pupal stage (P-2) or pharate adult stage (P-12). This is
similar to An. gambiae, where Willis (2010) reported that both RR-1 and RR-2
transcripts are present in pharate adults and post-eclosion, but many fewer are RR-1

compared with RR-2.

The secondary structure predicted by online software Phyre” (Kelley et al., 2015)

(http://www.sbg.bio.ic.ac.uk/) for RR-1 CPs of pattern B (Fig. 6B) suggested that most

of them shared a common structure homologous to the Polo-Box domain (Park et al.,
2010), which comprises a six-stranded antiparallel B-sheet shielded by one a-helix.
However, we could not find such a common domain in RR-1 CPs of pattern A (Fig.
6A). As Vannini and Willis (2017) reported, the location of RR-1s and RR-2s depends
on properties of individual proteins in An. gambiae. It will be interesting to learn how

RR-1s are involved in specific protein structures of adult cuticle.

The CPH genes (SI_Aki-262, 265, 266, 267and 268) which formed a cluster on

Chr28 and a small cluster of RR-2 genes (SI_Aki-186, 187, 188, 189 and 190) in Chrl5
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(Supplementary table. 1) had transcripts mainly in late larval and early pupal stages

(Fig. 6C).

RR-2 genes, which are the main members of “pattern D” of the heat-map (Fig. 6D),
were highly expressed in the pharate adult wing and epidermis (P-9 and P-12). These
genes were also well conserved among the three moth species with one-to-one
correspondence in the phylogenetic trees (Fig. 4B). S/ _Aki-166, encoding the highest
His-rich CP, had abundant transcripts in the pharate adult stage. This expression
pattern was similar to its B. mori ortholog, BmorCPR152, which encodes the highest
His-rich CP (Suetsugu et al., 2013). These CP genes, which were mainly expressed in
the pharate adult stage, may contribute to scales or other specific structures in the adult.
Not only RR-2 transcripts, but also transcripts from other CP families such as RR-1,
CPG, CPFL, CPAP and CPH, were also observed in high abundance in pupal wing and
epidermis (Fig. 6C, D). The finding that two RR-1 genes (S/_Aki-182 and 210) were
expressed highly only in the pupal stage, but not in the larval stage (Fig. 6D), is
interesting since most RR-/ genes had high transcript levels in larval epidermis. The
contrasting expression patterns of the genes encoding these two RR-1 proteins suggests
that their function merits further study.

Transcripts from a few CPAP, RR-1 and CPH genes were observed in abundance in
epidermis throughout the development and wing of pharate adult (Fig. 6E). The
transcripts of three CPAP genes (SI_Aki-20, 22 and 23) showed a steady high
abundance in epidermis in all stages of pupal wing. These three genes are orthologs of
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CPAP3-A1l, CPAP3-B and CPA3-C in both M. sexta and T. castaneum. Their
biological importance is indicated by reports that RNAi knockdown of 7cCPAP3-A1
causes adult lethality, down-regulation of the TcCPAP3-B causes a walking defect and
RNAI treatment for T7cCPAP3-C leads to molting arrest at the pharate adult stage
(Jasrapuria et al., 2012; Petkau et al., 2012).

His-rich RR-2 genes (SI_Aki-100-108, SI_Aki-110-117, SI_Aki-122, 124, 127, 129,
132, 134 136), which form the large species-specific clade in the phylogenetic tree
(Blue star in Fig.4B), unexpectedly showed few transcripts in epidermis or other
samples (Supplementary Fig. 3). However, since the transcripts were only examined in
limited tissues in this study, we estimate these species-specific His-rich CP genes may
be expressed in some hard cuticle structures such as the cornea of the compound eye,

maxilla, or antenna.

Another unexpected finding was that transcripts from CPG, CPAP, CPT, CPH,
RR-1and RR-2 were present in relatively high abundance at the 2" instar
(Supplementary Fig. 4), which was quite different from those of other larval stages.
Other CPs that were abundant at later stages also had high levels of transcripts in the
2" instar (Supplementary Fig. 5). Among several possibilities to explain this peculiar
expression pattern across all the samples is the large/major morphological change that
occurs in larvae during the transition from 1* to 2™ instar. Further study of the
ultrastructure and physical properties of larval cuticle at these stages may help to
explain this observation. Another likely possibility is related to the timing of sample
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collection. If the sampling was performed at the pharate third instar stage, CP
expression would be higher than in mid-instar larvae. It is also of interest to check the
transcripts of CP genes in the pharate stage. Levels of other CP transcripts are shown

in Supplementary Figure 5.

4. Conclusion

S. litura, among the most economically important global agricultural pests, is
characterized by a short life cycle, direct contact with soil during both late larval and
pupal/pharate adult stages, long distance migration and quick adaptation to diverse
ecological niches. RNA-Seq analysis suggests that differential expression of various
CP groups to produce cuticle layers with different physical properties at different
stages. This study aimed to illustrate how the CP genes have been adapted to the
characteristic life style of this pest by analyses of their genome organization,
phylogenetics and transcriptomics. Similar to M. sexta (Dittmer et al., 2015), the RR-2
group has expanded more than other CP groups, largely by gene duplication events
after speciation. Additionally, we found that 91 of 129 RR-2 CPs are His-rich,
amounting to twice the number and a greater fraction than in B. mori (from 58% in B.
morito 71% in S. litura). These His-rich proteins are likely involved in cuticular
sclerotization since a His residue, which contains a nucleophilic imidazole group, can
react with ortho-quinone or dehydrobenzodioxine (Andersen, 2010, 2012). Although

more evidence is needed, we speculate that the high content of His-residues and the
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large expansion of His-rich RR-2 CP genes that occur in S. /itura could contribute to
construct tougher cuticles that could protect against fungal and bacterial attacks and
abrasion throughout their larval and pupal stages. Comparison with M. sexta CPs also
strengthened this idea, since both species which stay under soil during pupal/pharate
adult stages without cocoons share a large expansion of His-rich RR-2 CP genes

compared with B. mori.

The present work clearly showed how this pest established its unique life cycle
through the expansion of His-rich CP genes, which provides insights into the possible

regulation of CPs for pest control and their properties as new biomaterials.
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Figure Captions

Figure 1. Differences in behavior and life cycle between S. litura and B. mori. L1-L6
refer to larval instars 1-6; W is the wandering stage; numbers in parentheses represent
days at a particular stage.

Figure 2. The number of His-rich CPs in each CP group. His-rich RR-2 CPs in S. litura,
91; B. mori, 54; His-rich RR-1 CPs in S. litura, 0; B. mori: 2; His-rich CPGs in S. litura,
11; B. mori 9; His-rich CPLCA in S. litura, 3; B. mori, 1; His-rich CPAP in S. litura, 3;
B. mori, 1; His-rich CPH in S. litura, 4; B. mori, 2. Blue, B. mori CPs; red, S. litura

CPs.

Figure 3. Chromosomal location of the largest cluster of CPR genes in S. /itura
compared with B. mori. RR-1 genes (red) and RR-2 genes (blue) are located primarily

in separate clusters on chromosome 9. Arrows indicate direction of transcription.

Figure 4. Phylogenetic trees of annotated RR-1 and RR-2 proteins among S. litura, B.
mori and M. sexta. (A) RR-1 protein genes. Black star, BmorCPR13; thick bar,
species-specific clade. (B) RR-2 protein genes. blue, M. sexta CPs; yellow, B. mori
CPs; magenta, S. litura CPs; blue star, 25 RR-2 CPs forming the biggest S. litura

specific clade; red star, highest His-content RR-2 CP among the three species, forming
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a clade. Green branch, His-rich CP genes. Bootstrap values of 70 or higher are shown
in the branches.

Figure 5. Transcript distribution of CP genes in RNA-Seq libraries. (A) Total FPKM
values of transcripts for CP genes in each family. (B) Numbers of CP genes with
transcripts in each family. EP, Epidermis; D, daytime; N, nighttime; Wg, wing.
Figure 6. Heatmap of transcripts of S. /itura CP genes grouped into five distinct

patterns. (A) CP transcripts mainly found in the larval epidermis. (B) CP transcripts

expressed highly in larval and pharate adult stages. (C) CP transcripts expressed highly

in epidermis of late larval to early pupal stages. (D) CP transcripts found mainly in the

pharate adult stage. (E) Transcripts of CP genes highly abundant through the larval to

pupal stage.
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Tablel. Size of each cuticular protein family in Spodoptera litura and Bombyx mori

Motif S.litura B.mori
RR-1 63 56

RR-2 129 93(4)"
RR-3 1 3
Tweedle 5 4

CPF 1 1

CPFL 7 4
CPLCA 4 2(BmorCPH6,7)°
CPCFC 1 1(BmorCPHI1)*
CPAP1 13 14
CPAP3 9 9
Glycine-Rich 28 29

CPH 26 31

Total 287 247

a,b,c

items in parentheses refer to CPs reported in Futahashi et al. (2008)

*4 more cuticular RR-2 genes were identified in S. litura than B. mori




Supplementary Table 1. Classification of CP coding genes.
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Supplementary Table 1. Classification of CP coding genes.


Supplementary Table 2. Numbers of genes from each CP group expressed per library

L1D2_EP(whole) [L2D2_EP(whole) |L3D2_EP |L4D2_EP |L5D2 _EP |L6D2_EP D |L6D2 EP N |W EP D P2 _EP [P2_Wg |P6_EP |P6_Wg [P9_EP |P9_Wg [P12_EP [P12_Wg
RR-1(63) 41 59 42 48 45 51 45 31 35 31 17 26 33 17 39 35
RR-2(129) 26 91 28 33 30 41 40 32 38 30 20 32 50 44 60 62
RR-3(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
CPG(28) 16 22 18 17 19 18 19 16 17 20 20 18 20 20 18 22
CPH(26) 1 21 12 17 14 18 16 1 16 14 13 16 13 10 17 16
CPAP1(13) 6 12 9 5 4 7 8 6 10 8 7 8 13 13 13 12
CPAP3(9) 8 8 8 8 8 8 8 7 7 7 6 7 7 6 7 7
CPFL(7) 4 6 4 5 4 5 6 1 7 6 1 3 6 2 7 6
CPLCA(4) 3 4 4 4 4 4 4 0 4 4 0 3 3 2 4 4
CPT(5) 5 5 4 3 4 4 3 4 3 2 3 2 3 3 4 4
CPF(1) 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1
CPCFC(1) 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
Total(287) 123 230 132 142 133 158 152 110 140|125 90| 118] 151 119 172 171




Supplementary Table 3. FPKM values of CP groups expressed per library

L1D2_EP(whole)[L2D2_EP(whole) L3D2_EP L4D2_EP [5D2 EP _ |L6D2 EP D|L6D2 _EP_N W_EP D W _EP NP2 EP |P2 Wg |P6_EP |P6_Wg [P9 EP __ [P9 Wg P12_EP P12_Wg
RR-1 116705 278947 82667 355390 268002 455408 462561| 26954 26775| 31679 1660 1890 2669 42854 14808 58283 11567
RR-2 348 49969 569 2478 377 8517 5084 992 999 11732| 1051 3025 5340 134920 184337 129479 162394
RR-3 642 303 1087 1332 949 1245 1443 635 207 2541 293 10 4 4 0 85 7
CPG 22935 116540 10206 4550 4322 3499 3163| 3068| 5817| 2265 2335| 120649 | 147493 93050 214203 118529 162159
CPH 149 25029 647 7192 1269 11518 8751 799 5365| 315771| 109135] 3238| 1526| 327068 64099 102801 39777
CPAP1 203 882 1494 192 135 221 226 2348 5271 339 147|  646| 746 4272 4208 13776 25131
CPAP3 1271 21586 3937 3601 1572 8445 6543| 2515| 2740] 2654| 2432| 27230| 31503 24499 13611 81304 8913
CPFL 17 6231 29 181 18 1072 793 39 47| 6635] 653 35| 143 4787 16926 37249 51676
CPLCA 129 3625 325 1900 713 2035 1356 0 18] 1334] 161 0 12 42 15 3628 233
CPT 8404 66386 10511 4451 3861 2222 934 65| 1615 16 16 82 21 25446 2762 4573 1563
CPF 4 0 10 0 0 0 3 0 8 2 2 8 5 4 29 421 856
CPCFC 0 145 3 382 0 177 226 136 17| 27017| 327| 144 40 56928 11963 1009 456
Total 150807 569643 111485 381649 281218] 494359 491083] 37551] 48979] 401985] 118212| 156957 189502] 713874 526961 551137 464732




B.mori = e - > > - -
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Supplementary Figure1. Expansion of RR-1 CP gene cluster on Chr1 in
S. litura.The orthologous RR-1CPs are clustered in Chr9 in B. mori.
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Supplementary Figure 2. The phylogenetic tree of CPFL CPs of
S. litura, M. sexta and B. mori. Five CPFL CPs formed a species
specific clade in S. litura.
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Supplementary Figure 3. CPs showing low expresson in most RNA-seq libraries.
Gene names colored red belong to the largest species-specific clade in the
phylogenetic tree.
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Supplementary Figure 4. S. litura CP transcripts heatmap. S. litura CPs were

highly abundant in the 2nd instar larval epidermis exclusively.
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Supplementary Figure 5. Heatmap of transcripts of all the other CP genes of S. litura

not shown in Fig. 6, Supplementary Fig. S3 and S4.
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