1,478 research outputs found

    Feedback vertex set on chordal bipartite graphs

    Full text link
    Let G=(A,B,E) be a bipartite graph with color classes A and B. The graph G is chordal bipartite if G has no induced cycle of length more than four. Let G=(V,E) be a graph. A feedback vertex set F is a set of vertices F subset V such that G-F is a forest. The feedback vertex set problem asks for a feedback vertex set of minimal cardinality. We show that the feedback vertex set problem can be solved in polynomial time on chordal bipartite graphs

    Development of vital signs detection system with ground noise cancellation

    Get PDF
    This study provides an experimental procedure and a noise immunity method for detecting the vital signs of a person in a vehicle. Velocity sensors that are convenient and accurate at acquiring data are adopted to detect the involuntary body vibrations. Two kinds of algorithms were proposed for detecting the vital signs in different environments with various ground noise level. To reduce the ground noise effect generated from extreme environments, a ground sensor also is used to measure the vibration amplitude of ground surface for calculating the car body response to provide excellent noise cancelling method. Measuring and processing the vibrations are effective methods for detecting people concealed in a vehicle. The complete detecting system was verified through experiment conducted with a passenger car

    Commentary on the Regulation of Viral Proteins in Autophagy Process

    Get PDF
    The ability to subvert intracellular antiviral defenses is necessary for virus to survive as its replication occurs only in the host cells. Viruses have to modulate cellular processes and antiviral mechanisms to their own advantage during the entire virus life cycle. Autophagy plays important roles in cell regulation. Its function is not only to catabolize aggregate proteins and damaged organelles for recycling but also to serve as innate immunity to remove intracellular pathogenic elements such as viruses. Nevertheless, some viruses have evolved to negatively regulate autophagy by inhibiting its formation. Even more, some viruses have employed autophagy to benefit their replication. To date, there are more and more growing evidences uncovering the functions of many viral proteins to regulate autophagy through different cellular pathways. In this review, we will discuss the relationship between viruses and autophagy and summarize the current knowledge on the functions of viral proteins contributing to affect autophagy process

    Traumatic Hyphema: A Review of Experience at the Medical College of Virginia During the Past Decade

    Get PDF
    Hyphema (hemorrhage into the anterior chamber of the eye), as the result of blunt injury to the eye, carries a potential danger of visual loss if not properly treated. This review of cases seen in the MCV Hospitals over the last decade lists some of the complications and stresses some of the important factors in the management

    A Unified Gaussian Process for Branching and Nested Hyperparameter Optimization

    Full text link
    Choosing appropriate hyperparameters plays a crucial role in the success of neural networks as hyper-parameters directly control the behavior and performance of the training algorithms. To obtain efficient tuning, Bayesian optimization methods based on Gaussian process (GP) models are widely used. Despite numerous applications of Bayesian optimization in deep learning, the existing methodologies are developed based on a convenient but restrictive assumption that the tuning parameters are independent of each other. However, tuning parameters with conditional dependence are common in practice. In this paper, we focus on two types of them: branching and nested parameters. Nested parameters refer to those tuning parameters that exist only within a particular setting of another tuning parameter, and a parameter within which other parameters are nested is called a branching parameter. To capture the conditional dependence between branching and nested parameters, a unified Bayesian optimization framework is proposed. The sufficient conditions are rigorously derived to guarantee the validity of the kernel function, and the asymptotic convergence of the proposed optimization framework is proven under the continuum-armed-bandit setting. Based on the new GP model, which accounts for the dependent structure among input variables through a new kernel function, higher prediction accuracy and better optimization efficiency are observed in a series of synthetic simulations and real data applications of neural networks. Sensitivity analysis is also performed to provide insights into how changes in hyperparameter values affect prediction accuracy

    Mutations in the PKM2 exon-10 region are associated with reduced allostery and increased nuclear translocation.

    Get PDF
    PKM2 is a key metabolic enzyme central to glucose metabolism and energy expenditure. Multiple stimuli regulate PKM2's activity through allosteric modulation and post-translational modifications. Furthermore, PKM2 can partner with KDM8, an oncogenic demethylase and enter the nucleus to serve as a HIF1α co-activator. Yet, the mechanistic basis of the exon-10 region in allosteric regulation and nuclear translocation remains unclear. Here, we determined the crystal structures and kinetic coupling constants of exon-10 tumor-related mutants (H391Y and R399E), showing altered structural plasticity and reduced allostery. Immunoprecipitation analysis revealed increased interaction with KDM8 for H391Y, R399E, and G415R. We also found a higher degree of HIF1α-mediated transactivation activity, particularly in the presence of KDM8. Furthermore, overexpression of PKM2 mutants significantly elevated cell growth and migration. Together, PKM2 exon-10 mutations lead to structure-allostery alterations and increased nuclear functions mediated by KDM8 in breast cancer cells. Targeting the PKM2-KDM8 complex may provide a potential therapeutic intervention

    The application of vital signs detection system for detecting in a truck with noise cancellation method

    Get PDF
    This research proposes an experimental procedure and ground noise cancellation method for detecting the presence of a person in a 3.5 ton truck, in an environment with high levels of ground noise. This study addresses the need for non-intrusive detection system that involves using velocity sensors placed on the chassis-frame to detect the weak vibrations generated by any human inside the vehicle. An additional velocity ground sensor is placed near the front tire to collect the ground noise signals that are used to estimate the ground noise response of the truck by manipulating a 2-DOF (degree of freedom) equivalent truck model. To increase the discriminative rate in the context of two scenarios, a person present and a person absent from the vehicle, a valid algorithm is proposed that decreases the ground noise effect emanating from the environment. Furthermore, two types of sensor location are discussed to promote the practicability of the proposed system
    corecore