17,783 research outputs found

    Exponential synchronization of complex delayed dynamical networks with general topology

    Get PDF
    The global exponential synchronization of complex delayed dynamical networks possessing general topology is investigated in this contribution. The network model considered can represent both the directed and undirected weighted networks. Novel delay-dependent linear controllers are designed via Lyapunov stability theory and appropriate property of the coupling matrix. It is shown that the controlled network is globally exponentially synchronized with a given convergence rate. Two examples of typical dynamical networks with coupling delays of this class, one possesses directed and the other with undirected coupling topology, both having a Lorenz system at each node, have been used to demonstrate and verify the novel control design proposed. © 2007 IEEE.published_or_final_versio

    DNA molecules and human therapeutics

    Get PDF
    Nucleic acid molecules are championing a new generation of reverse engineered biopharmaceuticals. In terms of potential application in gene medicine, plasmid DNA (pDNA) vectors have exceptional therapeutic and immunological profiles as they are free from safety concerns associated with viral vectors, display non-toxicity and are simpler to develop. This review addresses the potential applications of pDNA molecules in vaccine design/development and gene therapy via recombinant DNA technology as well as a staged delivery mechanism for the introduction of plasmid-borne gene to target cells via the nasal route

    Dihydrochalcone glycosides from Oxytropis myriophylla

    Get PDF
    Chemical investigations of the 70% alcohol extract of Oxytropis myriophylla (Pall.) DC. (Leguminosae) have afforded the new natural product neohesperidin dihydrochalcone (1) and the known phloretin-4'-O-β-D-glucopyranoside (2), which was the first reported from the genus Oxytropis. This paper reports the isolation and full spectroscopic characterization of compounds 1 and 2 by NMR, UV, IR and MS data

    Radical change and dietary conservatism: Mixing model estimates of human diets along the Inner Asia and China’s mountain corridors

    Get PDF
    Recent research has demonstrated that a series of mountains from the eastern Iranian Plateau to eastern Kazakhstan and to western China played a significant role in trans-Eurasian exchange during the third and second millennia BC. In close association with these mountain corridors, a number of southwestern Asian cereals, notably free threshing wheat and barley, moved eastward, and broomcorn millet, among other plant foods originating in China, moved westward. In this paper, we apply Bayesian stable isotope mixing models to published and newly obtained isotopic data in order to quantitatively estimate the contribution of different food resources to human diets, and we consider the complexity of human food strategies at both ends of these mountain corridors: southern Kazakhstan and the Hexi Corridor in western China. Our results contrast the rapid adoption of wheat and/or barley in the Hexi Corridor with the gradual, incremental adoption of millet in southern Kazakhstan during the second millennium BC.The authors are grateful to European Research Council, under grant 24964 (FOGLIP), Washington University Deanery Office Grant, American Association of University Women (AAUW), International Center for Advanced Renewable Energy and Sustainability (I-CARES) for financial support. We are thankful to Catherine Kneale and James Rolfe from Cambridge for assistance with isotopic analysis. We are also grateful to Pavel Tarasov for helps to the manuscript; and to Professors Mayke Wagner and Pavel Tarasov and Dr Robert Spengler for organizing the workshop, entitled ‘The Introduction and Intensification of Agriculture in Central Eurasia’, Berlin in 2015

    Repeatability of quantitative18F-FLT uptake measurements in solid tumors: an individual patient data multi-center meta-analysis

    Get PDF
    INTRODUCTION: 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) positron emission tomography (PET) provides a non-invasive method to assess cellular proliferation and response to antitumor therapy. Quantitative18F-FLT uptake metrics are being used for evaluation of proliferative response in investigational setting, however multi-center repeatability needs to be established. The aim of this study was to determine the repeatability of18F-FLT tumor uptake metrics by re-analyzing individual patient data from previously published reports using the same tumor segmentation method and repeatability metrics across cohorts. METHODS: A systematic search in PubMed, EMBASE.com and the Cochrane Library from inception-October 2016 yielded five18F-FLT repeatability cohorts in solid tumors.18F-FLT avid lesions were delineated using a 50% isocontour adapted for local background on test and retest scans. SUVmax, SUVmean, SUVpeak, proliferative volume and total lesion uptake (TLU) were calculated. Repeatability was assessed using the repeatability coefficient (RC = 1.96 × SD of test-retest differences), linear regression analysis, and the intra-class correlation coefficient (ICC). The impact of different lesion selection criteria was also evaluated. RESULTS: Images from four cohorts containing 30 patients with 52 lesions were obtained and analyzed (ten in breast cancer, nine in head and neck squamous cell carcinoma, and 33 in non-small cell lung cancer patients). A good correlation was found between test-retest data for all18F-FLT uptake metrics (R2 ≥ 0.93; ICC ≥ 0.96). Best repeatability was found for SUVpeak(RC: 23.1%), without significant differences in RC between different SUV metrics. Repeatability of proliferative volume (RC: 36.0%) and TLU (RC: 36.4%) was worse than SUV. Lesion selection methods based on SUVmax ≥ 4.0 improved the repeatability of volumetric metrics (RC: 26-28%), but did not affect the repeatability of SUV metrics. CONCLUSIONS: In multi-center studies, differences ≥ 25% in18F-FLT SUV metrics likely represent a true change in tumor uptake. Larger differences are required for FLT metrics comprising volume estimates when no lesion selection criteria are applied

    Delineation of the frequency and boundary of chromosomal copy number variations in paediatric neuroblastoma

    Full text link
    © 2018 Informa UK Limited, trading as Taylor & Francis Group. Neuroblastoma, the most common solid tumour in early childhood, is characterized by very frequent chromosomal copy number variations (CNVs). While chromosome 2p amplification, 17q gain, 1p and 11q deletion in human neuroblastoma tissues are well-known, the exact frequencies and boundaries of the chromosomal CNVs have not been delineated. We analysed the publicly available single nucleotide polymorphism (SNP) array data which were originally generated by the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative, defined the frequencies and boundaries of chromosomes 2p11.2–2p25.3 amplification, 17q11.1-17q25.3 gain, 1p13.3-1p36.33 deletion and 11q13.3-11q25 deletion in neuroblastoma tissues, and identified chromosome 7q14.1 (Chr7:38254795-38346971) and chromosome 14q11.2 (Chr14:21637401-22024617) deletion in blood and bone marrow samples from neuroblastoma patients, but not in tumour tissues. Kaplan Meier analysis showed that double deletion of Chr7q14.1 and Chr14q11.2 correlated with poor prognosis in MYCN gene amplified neuroblastoma patients. In conclusion, the oncogenes amplified or gained and tumour suppressor genes deleted within the boundaries of chromosomal CNVs in tumour tissues should be studied for their roles in tumourigenesis and as therapeutic targets. Focal deletions of Chr7q14.1 and Chr14q11.2 together in blood and bone marrow samples from neuroblastoma patients can be used as a marker for poorer prognosis and more aggressive therapies

    The optical microscopy with virtual image breaks a record: 50-nm resolution imaging is demonstrated

    Full text link
    We demonstrate a new 'microsphere nanoscope' that uses ordinary SiO2 microspheres as superlenses to create a virtual image of the object in near field. The magnified virtual image greatly overcomes the diffraction limit. We are able to resolve clearly 50-nm objects under a standard white light source in both transmission and reflection modes. The resolution achieved for white light opens a new opportunity to image viruses, DNA and molecules in real time
    corecore