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Exponential Synchronization of Complex Delayed Dynamical

Networks with General Topology

Tao Liu, Georgi M. Dimirovski, Senior Member IEEE, and Jun Zhao

Abstract— The global exponential synchronization of com-
plex delayed dynamical networks possessing general topology is
investigated in this contribution. The network model considered
can represent both the directed and undirected weighted
networks. Novel delay-dependent linear controllers are designed
via Lyapunov stability theory and appropriate property of the
coupling matrix. It is shown that the controlled network is
globally exponentially synchronized with a given convergence
rate. Two examples of typical dynamical networks with coupling
delays of this class, one possesses directed and the other with
undirected coupling topology, both having a Lorenz system at
each node, have been used to demonstrate and verify the novel
control design proposed.

I. INTRODUCTION

A complex network is a large set of interconnected

communicating and interacting nodes where a node is a

fundamental unit having specific contents and exhibiting

dynamical behavior. In fact, many systems in science and

technology can be modeled as complex networks, and most

well known examples are: power grids, Internet, World Wide

Web, metabolic systems, food webs, etc. In turn, the analysis

and control of dynamical behaviors in complex networks

have become a very hot topic in various disciplines [1]-[4].

Synchronization, the most important collective behavior of

complex networks, has received much of the focus in recent

years. A considerable number of studies on this topic have

been reported [5]-[18].

Recently, [10]-[11] introduced a uniform complex network

model and investigated its synchronization. [12] extended

that model to the one with coupling delays, and derived

both delay-independent and delay-dependent synchronization

conditions. The exponential synchronization of a delayed

network as well as the effects of time delays is studied

in [13]. Sufficient conditions of synchronization for de-

layed continuous- and discrete-time network are obtained

respectively in [14]. Further, in [15] and [16], the authors

propose adaptive and robust adaptive, respectively, designs

thereby synchronizing complex dynamical networks by con-

trol design. [17] investigated exponential synchronization of
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a undirected controlled network with coupling delays.

It should be noted that the coupling topology is assumed

to be undirected and unweighted in most of existing works.

However, this simplification does not match the peculiarities

of real-world networks due to the actual circumstances in

far too many cases. For instance, the World Wide Web,

metabolic and citation networks are all directed graphs, and

some food webs, neural networks are weighted; see [18] and

references therein. Another problem that deserves attention is

that few works from control engineering view point, as those

in [15]-[17], can be found in the literature. Sometimes the

networks may not be synchronized when a controller is not

added into the infrastructure of individual nodes. Thus the

controlled synchronization of complex networks is believed

to be a rather significant topic in both theoretical research

and practical applications.

In view of these effects, our study is aimed at expo-

nentially synchronizing delayed dynamical networks with

general coupling topology via designing decentralized delay-

dependent linear controllers. Compared with the existing

works on exponential synchronization of controlled net-

works, the results proposed in this paper have three distinct

features: (i) the model is general; (ii) only partial information

of the coupling matrix is used to design the controllers

which makes the controller implementation be fairly easy

in practice; (iii) the controllers designed in this paper are

delay-dependent and less conservative than the exiting ones

which are delay-independent.

Further this paper is written up as follows. We first intro-

duce a more general model of delayed dynamical networks

in Section II than the ones before considered in the litera-

ture. Then, in Section III, we design decentralized delay-

dependent linear controllers which guarantee the global

exponential synchronization of the controlled network by

employing the property of the coupling matrix. In Section IV,

two illustrative examples for directed and undirected delayed

dynamical network are given to demonstrate the effectiveness

of the theoretical derivation. Conclusion and references are

given thereafter.

II. COMPLEX DELAYED DYNAMICAL NETWORK MODEL

Consider a delayed complex dynamical network with

general coupling topology which consists of N nonlinearly

and diffusively coupled identical nodes. Each of the nodes

is an n-dimensional dynamical system. The state equations
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of the entire network are given as below

ẋi = f (xi)+
N

∑
j=1
j 6=i

ci j(h(x j(t − τ))−h(xi(t − τ))), (1)

where xi = (xi1,xi2, . . . ,xin)
T ∈ Rn, i = 1,2, . . . ,N are state

variables of node i, and τ > 0 is an arbitrary but bounded

constant representing the time delay. Functions f (·) ∈ Rn,

h(·)∈ Rn are assumed smooth nonlinear vector fields. Matrix

C = (ci j)N×N is the coupling configuration matrix repre-

senting the coupling strength and topology structure of the

network; if there is a connection between node i and node

j (i 6= j), then ci j > 0; otherwise ci j = 0. The diagonal

elements of matrix C are defined as

cii = −
N

∑
j=1
j 6=i

ci j. (2)

Note that the network model (1) is quite general. It covers

the weighted and directed network model introduced in [18];

when C is symmetric, the network is weighed and undirected.

On the other hand, if h(xi) = Γxi with Γ = (ri j)n×n being

an inner-coupling matrix of the network, then the network

model degenerates into the one of linearly and diffusively

coupled network with coupling delays,

ẋi = f (xi)+
N

∑
j=1
j 6=i

ci jΓ(x j(t − τ)− xi(t − τ)) (3)

which has been discussed in the literature extensively [12]-

[14]. Furthermore, in here the coupling matrix is not assumed

to be irreducible.

Our task in this paper is to globally exponentially synchro-

nize the states of the network (1) on the manifold defined

(4) by introducing a delay-dependent linear controller into

each individual node.

x1(t) = x2(t) = · · · = xN(t) = s(t), (4)

where s(t) ∈ Rn is a solution of an isolated node

ṡ(t) = f (s(t)). (5)

We assume that s(t) is an arbitrary desired state which can

be an equilibrium point, a nontrivial periodic orbit, or even

a chaotic orbit.

Next, the rigorous mathematical definition of exponential

synchronization for delayed dynamical networks (1) is intro-

duced.

Definition 1. Let X(t; t0;φ) = (x1(t; t0;φ)T ,x2(t; t0;φ)T ,
. . . ,xN(t; t0;φ)T )T ∈ RnN be a solution of delayed dynamical

network (1), where φ = (φ T
1 ,φ T

2 , . . . , φ T
N )T , φi = φi(θ) ∈

C([−τ,0],Rn) are initial conditions of node i, f : R×Ω→Rn,

and h : R×Ω→Rn are continuously differentiable on Ω⊆Rn.

If there exist constants α > 0, λ > 0 and a nonempty subset

Λ ⊆ Ω with φi ∈ Λ, i = 1,2, . . . ,N such that X(t; t0;φ) ∈
Ω×·· ·×Ω for all t ≥ t0, and

‖X(t; t0;φ)−S(t; t0;s0)‖ ≤ αe−λ t sup
−τ≤θ≤0

‖φ(θ)−S0‖ (6)

(‖ · ‖ is the Euclidean norm) where S(t; t0;s0) =
(s(t; t0;s0)

T , . . . ,s(t; t0;s0)
T )T ∈ RnN , S0 = (sT

0 , . . . ,sT
0 )T ,

s(t; t0;s0) is a solution of the system (5) with the initial

condition s0 ∈ Ω, then the delayed dynamical network (1)

is said to realize exponential synchronization such that λ is

the exponential rate and Λ×·· ·×Λ is called the region of

synchrony of the delayed network (1).

III. GLOBALLY EXPONENTIAL SYNCHRONIZATION OF

CONTROLLED DYNAMICAL NETWORK

In this section, we study the global exponential syn-

chronization of delayed network (1) by designing a linear

controller for each node. Thus, the controlled network can

be described as

ẋi = f (xi)+
N

∑
j=1
j 6=i

ci j(h(x j(t − τ))−h(xi(t − τ)))+ui, (7)

where ui ∈ Rn, i = 1,2, . . . ,N are input variables of node i.

In order to achieve the objective on the manifold (4), we

define the error vector

ei(t) = xi(t)− s(t), i = 1,2, . . . ,N. (8)

Subtracting (5) from (7) yields the error dynamical system

ėi(t) = f (xi(t))− f (s(t))+
N

∑
j=1
j 6=i

ci j(g(e j(t − τ))

−g(ei(t − τ)))+ui,

(9)

where g(ei(t−τ)) = h(xi(t−τ))−h(s(t−τ)), i = 1,2, . . . ,N.

It can easily verify that g(0) = 0. Then the global exponential

synchronization problem of the dynamical network (7) is

equivalent to the problem of global exponential stabilization

of the error dynamical system (9), which resembles the

setting in large-scale systems [19].

In the sequel, we need Assumption 1 in order to obtain

our main results.

Assumption 1. There exist two positive constants L1 and

L2, such that

‖ f (xi)− f (s)‖ ≤ L1‖ei‖, (10)

‖h(xi)−h(s)‖ ≤ L2‖ei‖, (11)

hold for i = 1,2, . . . ,N.

Obviously, Assumption 1 is a very mild assumption and

has been widely used in the literature [15]-[16].

A. Synchronization of Weighted and Directed Network

We proceed further with the following result for the case

of weighted and directed network (7).

Theorem 1. Suppose Assumption 1 holds and the time-

invariant delay is τ ∈ (0, ρ] for some ρ > 0. Then the delayed

complex dynamical network (7) is globally exponentially

synchronized for any fix time delay τ ∈ (0, ρ] under the

set of controllers

ui = kiei, i = 1,2, . . . ,N (12)
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where

ki = −L1 −λ + cii +
1

2
e2λρ L2

2(ci + cii),

and ci =−∑
N
j=1, j 6=i c ji < 0, cii < 0, i = 1,2, . . . ,N, L1 and L2

are defined in Assumption 1, λ > 0 is the exponential rate

available to be designed.

Proof. Select the following Lyapunov functional candidate

V (t) = e−2λρ
N

∑
i=1

ei(t)
T ei(t)−W, (13)

where

W =
N

∑
i=1

(ci + cii)
∫ t

t−τ
e2λ (η−t)g(ei(η))T g(ei(η))dη .

Then the time derivative of V (t) along the solution of the

error system (9) is given as follows:

V̇ (t) =2e−2λρ
N

∑
i=1

ei(t)
T [ f (xi(t))− f (s(t))+ui

+
N

∑
j=1
j 6=i

ci j(g(e j(t − τ))−g(ei(t − τ)))]

−
N

∑
i=1

(ci + cii)‖g(ei(t))‖
2 + e−2λτ

N

∑
i=1

(ci + cii)

×‖g(ei(t − τ))‖2 +2λW.

Substitution the controllers (12) into previous equation, and

consideration (10) in Assumption 1, yields

V̇ (t) ≤2e−2λρ
N

∑
i=1

(−λ + cii)‖ei(t)‖
2 +2e−2λρ

N

∑
i=1

N

∑
j=1
j 6=i

ci je
T
i

× (g(e j(t − τ)−g(ei(t − τ))+
N

∑
i=1

(ci + cii)(L
2
2‖ei(t)‖

2

−‖g(ei(t))‖
2)+ e−2λτ

N

∑
i=1

(ci + cii)‖g(ei(t − τ))‖2

+2λW

From (11) in Assumption 1, we have ‖g(ei)‖ = ‖h(xi)−
h(s)‖ ≤ L2‖xi − s‖ = L2‖ei‖, and this is to say

N

∑
i=1

(ci + cii)L
2
2‖ei(t)‖

2 ≤
N

∑
i=1

(ci + cii)‖g(ei(t))‖
2.

On the other hand, e−2λτ ≥ e−2λρ , where ci < 0, cii < 0,

0 < τ ≤ ρ , hence we have

V̇ (t) ≤2e−2λρ
N

∑
i=1

(−λ + cii)‖ei(t)‖
2 +2e−2λρ

N

∑
i=1

N

∑
j=1
j 6=i

ci je
T
i

× (g(e j(t − τ)−g(ei(t − τ))+ e−2λρ
N

∑
i=1

(ci + cii)

×‖g(ei(t − τ))‖2 +2λW.

From section II apparently we have

N

∑
i=1

N

∑
j=1
j 6=i

c ji‖g(ei(t − τ))‖2 =
N

∑
i=1

N

∑
j=1
j 6=i

ci j‖g(e j(t − τ))‖2. (14)

Due to property (2), (14) and with ci = −∑
N
j=1, j 6=i c ji, one

obtains

V̇ (t) ≤−2λe−2λρ
N

∑
i=1

‖ei(t)‖
2 −2e−2λρ

N

∑
i=1

N

∑
j=1
j 6=i

ci j‖ei(t)‖
2

+2e−2λρ
N

∑
i=1

N

∑
j=1
j 6=i

ci jei(t)
T (g(e j(t − τ))−g(ei(t − τ)))

− e−2λρ
N

∑
i=1

N

∑
j=1
j 6=i

ci j(‖g(e j(t − τ))‖2 +‖g(ei(t − τ))‖2)

+2λW

= 2λW −2λe−2λρ
N

∑
i=1

‖ei(t)‖
2

− e−2λρ
N

∑
i=1

N

∑
j=1
j 6=i

ci j‖ei(t)−g(e j(t − τ))‖2

− e−2λρ
N

∑
i=1

N

∑
j=1
j 6=i

ci j‖ei(t)+g(ei(t − τ))‖2.

Now it is readily seen that

−
N

∑
i=1

N

∑
j=1
j 6=i

ci j‖ei(t)−g(e j(t − τ))‖2

−
N

∑
i=1

N

∑
j=1
j 6=i

ci j‖ei(t)+g(ei(t − τ))‖2 ≤ 0

where ci j ≥ 0, for i, j = 1,2, . . . ,N, i 6= j. Therefore, it follows

that

V̇ (t) ≤−2λV (t). (15)

By calculating integration on both sides of inequality (15),

we get

V (t) ≤ e−2λ (t−t0)V (t0). (16)

Further, with regard to (13), it is readily inferred

a‖e(t)‖2 ≤V (t) ≤ b‖et0‖
2, (17)

where e = (eT
1 ,eT

2 , . . . ,eT
N)T , ‖et0‖ = sup−τ≤θ≤0 ‖e(t0 + θ)‖,

a = e−2λρ , b = e−2λρ + c, c = max
i
{|c1|, . . . , |cN |, |c11|, . . . ,

|cNN |}. By making use of (16) and (17), finally we obtain:

‖e(t)‖ ≤

√

b

a
e−λ (t−t0)‖et0‖.

Therefore, in closed loop under the controllers (12), it

follows that the error dynamical system (9) is globally expo-

nentially stable at the equilibrium set ei = 0, i = 1,2, . . . ,N
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with the exponential rate λ . Consequently, the synchronous

solution of delayed dynamical network (7) is globally expo-

nentially stable. Thus, the proof is completed.

In a special case when h(xi) = Γxi, i.e., the network is

linearly coupled, the complex network model (1) degenerates

into (3). Also, note that the inequality ‖Γei‖ ≤ ‖Γ‖ · ‖ei‖
holds. This way, for the network (3) we obtain the next

corollary.

Corollary 1. Consider the complex network (3) with

the time-invariant delay τ ∈ (0, ρ]. If the inequality (10)

in Assumption 1 holds, then the synchronous solution of

complex dynamical network (3) is globally exponentially

stable under controllers

ui = kiei, i = 1,2, . . . ,N (18)

where

ki = −L1 −λ + cii +
1

2
e2λρ(ci + cii)‖Γ‖2,

and ci, i = 1,2, . . . ,N, and L1 are defined as in Theorem 1.

Until now, we have investigated the synchronization of

weighted and directed network.

B. Synchronization of Weighted and Undirected Network

Some real-world networks have undirected graph topology

structure. In this case, it appears the form of the controllers

proposed in Theorem 1 will be simplified. When the network

is undirected, i.e. C is a symmetric matrix, then we have

cii = −
N

∑
j=1
j 6=i

ci j = −
N

∑
j=1
j 6=i

c ji, (19)

and

N

∑
i=1

N

∑
j=1
j 6=i

ci j‖g(ei(t))‖
2 =

N

∑
i=1

N

∑
j=1
j 6=i

ci j‖g(e j(t))‖
2. (20)

It is therefore that the controllers reduce to a more simple

form. This is addressed in Theorem 2.

Theorem 2. Suppose Assumption 1 holds and the time-

invariant delay is τ ∈ (0, ρ] for some ρ > 0. Then the

delayed complex dynamical network (7) with weighted and

undirected topology is globally exponentially synchronized

for any fix time delay τ ∈ (0, ρ] under controllers

ui = kiei, i = 1,2, . . . ,N (21)

where

ki = −L1 −λ +(1+ e2λρ L2
2)cii,

and L1, L2 are defined as in Theorem 1.

Proof. Select the following Lyapunov functional candidate

V (t) =e−2λρ
N

∑
i=1

eT
i ei −2

N

∑
i=1

cii

∫ t

t−τ
e2λ (η−t)g(ei(η))T

×g(ei(η))dη .

(22)

By using the property (19) and (20), one can get that the

time derivative of V (t) along the error system (9) satisfies

the inequality

V̇ (t) ≤−2λV (t).

Further the procedure of the proof is rather similar to that of

Theorem 1, and it is omitted.

Remark 1. In reality, it is often quite difficult to get the

entire information on the coupling matrix C. To overcome

this constraint, in this paper, we use partial information of the

matrix C to design the controllers. For the directed network,

the diagonal elements cii and the negative column sum of off-

diagonal elements ci are used to synthesize the decentralized

controllers. In particular, only the diagonal elements cii

are needed for the designed controllers to synchronize the

undirected network. These make fairly easy the controllers

implementation in practice.

Remark 2. The controller design method proposed in this

section can be applied to some uncertain delayed network.

When the exact value of ci and cii are unavailable, their lower

bounds c̃i and c̃ii can be estimated instead. Then these lower

bounds should replace parameters ci and cii in the designed

controllers. Thus adjusted controllers still exponentially syn-

chronize the corresponding uncertain network.

Remark 3. For the delay parameter, it is very hard to get

exact information of τ , but there are still methods to give an

upper bound ρ on τ to synthesize the delay-dependent con-

trollers. Further, with some slight change, the controllers can

also be applied to the network with time-varying coupling

delays 0 < τ(t) ≤ ρ where the delay derivative is less than

1.

Remark 4. It should be noted that our results are less

conservative than the ones proposed in [17]. The model

considered in this paper is quite general. The nodes are

coupled nonlinearly, and coupling topology can represent

both directed and undirected weighted network. Moreover,

our controllers are delay-dependent whereas in [17] the

controllers are delay-independent, which makes them con-

servative especially in cases of networks with large coupling

delays.

IV. ILLUSTRATIVE EXAMPLES

To show the effectiveness of proposed synchronization

criteria, we consider a delayed dynamical network with

nonlinearly coupled Lorenz systems. It is known that the

solution of the trajectory of the Lorenz system approaches a

chaotic attractor, and a single Lorenz system is described by





ẋ1

ẋ2

ẋ3



 = A





x1

x2

x3



+





0

−x1x3

x1x2



 ,

where

A =





−p1 p1 0

p3 −1 0

0 0 −p2



 ,

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI19.9

2324



p1 = 10, p2 = 8/3, p3 = 28. And the networked system is

defined as:





ẋi1

ẋi2

ẋi3



 =A





xi1

xi2

xi3



+





0

−xi1xi3

xi1xi2





+
N

∑
j=1
j 6=i

ci j(h(x j(t − τ))−h(xi(t − τ)))+ui,

(23)

where h(xi(t − τ)) = (p1(xi2(t − τ)− xi1(t − τ)), 0, xi1(t −
τ)xi2(t − τ)− p2xi3(t − τ))T , and τ = 0.1.

Similar to [15], Assumption 1 holds. We simulate the

above delayed network with two different coupling topology

structures: (a) directed network; (b) undirected network. The

details of the simulation experiments are presented in the

following two subsections.

A. Directed Network

Here, we consider the directed network with 10 dynamical

nodes. Select the asymmetric coupling matrix as

C =

































−0.1 0 0 0 0.1
0 −0.3 0 0.1 0

0 0 −0.5 0.1 0.1
0.1 0.1 0.1 −0.8 0.1
0 0 0.1 0.1 −0.3
0 0.1 0.1 0.1 0

0 0.1 0 0 0

0 0 0 0.1 0.1
0 0 0 0 0

0 0.1 0 0 0

0 0 0 0 0

0 0.1 0 0 0.1
0.1 0.1 0 0 0.1
0.1 0 0.1 0.1 0.1
0 0 0.1 0 0

−0.6 0.1 0.1 0.1 0

0.1 −0.3 0 0.1 0

0 0 −0.2 0 0

0 0.1 0 −0.1 0

0 0 0 0 −0.1

































.

According to Theorem 1 in Section III, one can syn-

chronize the network (23) by design of the following linear

controllers

ui = kiei, i = 1,2, . . . ,N (24)

where λ = 1, ρ = τ = 0.1, s(0) = (4,5,6)T .

Fig.1-Fig.3 show the synchronous errors ei1, ei2, ei3, i =
1,2, . . . ,10 of the network (23) with directed graph topology.

Apparently, all the synchronization errors do globally expo-

nentially converge to zero with the given exponential rate

λ = 1, i.e., the synchronous solution is exponentially stable

for delayed dynamical network (23)-(24).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

0

1

2

3

4

5

t

e
i1

Fig. 1. Synchronization errors ei1 of the directed network.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

0

1

2

3

4

5

t

e
i2

Fig. 2. Synchronization errors ei2 of the directed network.

B. Undirected Network

Consider the 50-node delayed network (23) generated

by B-A scale-free model where the coupling matrix C is

symmetric in this case. Based on Theorem 2 in Section

III, the linear controllers (21) exponentially synchronize the

network (23), where λ = 1, ρ = τ = 0.1, s(0) = (4,5,6)T .

The simulation results are shown in Fig.4-Fig.6, respectively,

where one can get that all the states of the undirected network

indeed exponentially synchronize to that of isolated node (5).

V. CONCLUSIONS

The problem of global exponential synchronization for

complex networks with nonlinear dynamical nodes and

coupling delays has been investigated in this paper. The

complex network with decentralized controllers is considered

as an integrally large-scale nonlinear system with a special

structure. An adequate Lyapunov functional is constructed

to deal with the problem of controlled synchronization as

to ensure the closed exponential stability. Several network

synchronization criteria for such a network have been ob-

tained. With the topology of the network, decentralized

delay-dependent linear controllers are designed such that the
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Fig. 3. Synchronization errors ei3 of the directed network.
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Fig. 4. Synchronization errors ei1 of the undirected scale-free network.

global exponential synchronization for the delayed networks

is solved. Two numerical examples of delayed networks with

different coupling topology are given, which demonstrate the

effectiveness of proposed results.
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