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Abstract	

	

Recent	 research	 has	 demonstrated	 that	 a	 series	 of	 mountains	 from	 the	 eastern	

Iranian	Plateau	to	eastern	Kazakhstan	and	to	western	China	played	a	significant	role	

in	 trans-Eurasian	 exchange	 during	 the	 third	 and	 second	 millennia	 BC.	 In	 close	

association	with	these	mountain	corridors,	a	number	of	southwestern	Asian	cereals,	

notably	free	threshing	wheat	and	barley,	moved	eastward;	broomcorn	millet,	among	

other	 plant	 foods	 originating	 in	 China,	moved	westwards.	 In	 this	 paper	we	 apply	

Bayesian	 stable	 isotope	mixing	models	 to	 published	 and	 newly	 obtained	 isotopic	

data	in	order	to	quantitatively	estimate	the	contribution	of	different	food	resources	

to	 human	 diets;	 and	we	 consider	 the	 complexity	 of	 human	 food	 strategies	 at	 the	

both	ends	of	these	mountain	corridors:	southern	Kazakhstan	and	the	Hexi	corridor	

in	western	China.	Our	results	contrast	the	rapid	adoption	of	wheat	and/or	barley	in	

the	 Hexi	 Corridor	 with	 the	 gradual,	 incremental	 adoption	 of	 millet	 in	 southern	

Kazakhstan	during	the	second	millennium	BC.	
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Introduction		

	

In	recent	years,	our	knowledge	and	understanding	of	the	nature	of	the	connections	

among	 groups	 of	 people	 in	 the	 Bronze	 Age	 Eurasia	 has	 grown.	 Various	 studies	

consider	 not	 only	 the	 expansion	 of	 food	 technologies,	 but	 also	 the	 spread	 of	 the	

ways	that	food	was	consumed	in	prehistory.	That	is,	why	human	diets	in	some	areas	

were	 subject	 to	 radical	 changes	while	 in	 other	 areas	 people	 appear	 to	 have	 been	

conservative	 in	 their	 dietary	 habits	 (Boivin	et	 al.,	 2012;	 Lightfoot	et	 al.,	 2013;	 Liu	

and	Jones,	2014;	Liu	et	al.,	2014).	In	the	context	of	this	discussion,	the	eastern	sector	

of	Central	Asia	is	of	particular	interest.	Research	has	demonstrated	that	a	series	of	

foothill	sites	from	the	eastern	Iranian	Plateau	to	eastern	Kazakhstan	form	an	‘Inner	

Asian	Mountain	Corridor’	which	played	a	significant	role	in	trans-Eurasian	exchange	

during	 the	 third	 and	 second	millennia	 BC	 (Frachetti	et	 al.,	 2010;	 Frachetti,	 2012;	

Spengler	and	Willcox,	2013;	Spengler	et	al.,	2014a;	Spengler	et	al.,	2014b;	Motuzaite	

Matuzeviciute	 et	 al.,	 2015b;	 Spengler	 2015).	 Other	 scholars	 have	 extended	 this	

mountain	 corridor	 concept	 to	 consider	 broadly	 the	 foothills	 of	 the	 Tianshan	

Mountains,	 as	well	 as	 the	northern	 edges	 of	 the	Tibetan	Plateau,	 namely	 the	Hexi	

corridor,	and	the	western	loess	plateau	in	China	(Flad	et	al.,	2010;	Chen	et	al.,	2014;	

Liu	et	al.,	2014;	Zhang	et	al.,	2015;	Liu	et	al.,	in	press).	

	

There	 is	 now	 much	 evidence	 that	 a	 series	 of	 connections	 between	 human	

populations	 was	 established	 through	 these	 mountain	 corridors	 since	 the	 Bronze	

Age.	 From	 the	 evidence	 of	 early	 horse	 management,	 metallurgy	 and	 a	 range	 of	

associated	artifacts,	we	can	trace	the	origins	of	these	connections	to	the	latter	part	

of	 the	 second	millennium	 BC	 (Levine,	 1999;	Mei,	 2003;	 Sherratt,	 2005;	 Frachetti,	

2008;	Linduff	and	Mei,	2009;	Rawson,	2013;	Lin,	2015).	Archaeobotanical	evidence	

from	 cereal	 crops	 may	 be	 able	 to	 push	 the	 date	 of	 these	 connections	 back	 even	
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further	 into	 at	 least	 the	 third	 millennium	 BC	 or	 earlier.	 This	 process	 has	 been	

referred	as	 ‘food	globalisation	 in	prehistory’	 (e.g.	 Jones	et	al.,	2011;	 Jones	et	al.,	 in	

press).	 In	 close	 association	 with	 these	 mountain	 corridors,	 a	 number	 of	

southwestern	 Asian	 cereals,	 notably	 free	 threshing	 wheat	 and	 barley,	 moved	

eastward;	 	broomcorn	millet,	among	other	plant	foods	originating	in	China,	moved	

westwards	(see	Motuzaite	Matuzeviciute	et	al.,	2013;	Spengler	et	al.,	2014b;	Liu	et	

al.,	 in	 press	 for	 reviews).	 Both	 Chinese	 and	 southwest	 Asian	 cereals	 were	

documented	in	the	late	third	millennium	BC	in	Begash	in	east	Kazakhstan	(directly	

dated,	2461-2154 cal. BC),	while	a	number	of	sites	from	west	China	provide	similar	

evidence	 dated	 to	 the	 late	 third	 and	 early	 second	millennium	BC	 (2100-1800	 cal.	

BC)	(Frachetti	et	al.,	2010;	Liu	et	al.,	in	press).			

	

While	 the	archaeobotanical	evidence	provides	 locations,	dates	and	site	contexts,	 it	

stops	 short	 of	 elucidating	 the	 significance	 of	 the	 trans-located	 crops	 in	

contemporary	 human	 food	 chains.	 However,	 stable	 carbon	 and	 nitrogen	 isotopic	

evidence	allows	us	 to	quantify	 the	dietary	proportions	of	 foodstuffs	with	different	

isotopic	 ratios.	 It	 so	 happens	 that	 two	 of	 the	 crops	moving	westward	 from	China	

(broomcorn	 and	 foxtail	 millet)	 are	 C4	 plants	 that	 leave	 an	 isotopic	 signature	

throughout	 the	 food	 chain	 which	 is	 distinctive	 from	 that	 left	 by	 southwest	 Asian	

crops	moving	eastward	(which	are	all	C3	plants).	A	number	of	recent	isotope	studies	

follow	 the	 movements	 in	 both	 directions	 by	 investigating	 possible	 human	 diets.	

These	studies	have	demonstrated	 that	 the	westward	expansion	of	Chinese	millets,	

and	 the	 eastward	 movement	 of	 the	 Fertile	 Crescent	 cereals	 follow	 different	

isotopically	 detectable	 patterns	 (Lightfoot	et	 al.,	 2014;	Motuzaite	Matuzeviciute	et	

al.,	 2015a).	 Other	 studies	 have	 addressed	 such	 questions	 as:	 why	 a	 new	 type	 of	

cereal	 could	 be	 adopted	 in	 a	 region	 with	 an	 already	 existing	 indigenous	 cereal	

cultivation	tradition;	and	why	a	new	type	of	cereal	was	welcomed	in	one	region	but	

rejected	initially	in	another	(Lightfoot	et	al.,	2013;	Liu	et	al.,	2014).	In	this	paper,	we	

apply	 Bayesian	 stable	 isotope	 mixing	 models	 to	 previously	 published	 and	 newly	

obtained	 isotopic	 data	 in	 order	 to	 quantitatively	 estimate	 the	 contribution	 of	

different	 food	 resources	 to	 human	diets.	 In	 the	 light	 of	 recent	 isotope	 studies,	we	
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consider	 the	driving	 force(s)	behind	 the	expansions	of	 these	 cereal	 crops;	 and	we	

consider	the	complexity	of	human	food	strategies	at	the	both	ends	of	the	mountain	

corridors:	southern	Kazakhstan	and	the	Hexi	Corridor	in	northwest	China.		

	

Expansions	of	the	Fertile	Crescent	crops	and	the	Chinese	millets		

	

By	 c.	 1500	 BC,	 the	 geographical	 range	 of	 two	 of	 the	 southwest	 Asian	 crops,	 free	

threshing	 wheat	 and	 barley,	 and	 of	 one	 of	 the	 North	 China’s	 domesticates,	

broomcorn	millet,	extended	from	the	Pacific	to	the	Atlantic	Ocean.	The	chronology,	

pathways,	and	driving	forces	of	these	expansions	have	been	subjected	to	scholarly	

investigations	(e.g.	Jones	et	al.	2011).	

	

The	pattern	of	the	eastern	movement	of	wheat	and	barley	from	southwest	Asia	has	

recently	 become	 clear.	 Evidence	 for	 the	 cultivation	 and	 domestication	 of	 various	

wheat	and	barley	species	appears	in	southwest	Asia	from	at	least	10,000	years	ago	

(e.g.	Weiss	 and	Zohary	2011).	Various	 forms	of	wheat	 and	barley	 are	 recorded	 in	

western	Central	Asia	around	6000–5000	years	ago	(Miller,	2003;	Harris,	2010)	and	

in	 Pakistan	 by	 around	 7000	 years	 ago	 (Costantini,	 1984;	 Meadow,	 1996;	 Petrie,	

2015).	 After	 these	 initial	 spreads,	 the	 subsequent,	 more	 extensive	 movement	 of	

wheat	and	barley	appears	to	be	restricted	to	the	free	threshing	forms.	Research	in	

eastern	 Central	 Asia	 and	western	 China	 shows	 the	mountain	 corridors	 played	 an	

important	role	in	expansion	of	free	threshing	wheat	during	the	third	millennium	BC	

(see	Liu	et	al.	in	press	for	a	review).	

	

Beyond	Central	Asia,	we	can	distinguish	two	separate	expansion	sequences	of	 free	

threshing	wheat	to	the	north	and	south	of	the	Tibetan	Plateau	in	the	third	and	the	

second	millennium	BC	(Liu	et	al.,	in	press).	In	the	north,	the	sequence	runs	from	the	

eastern	 range	 of	 the	 Inner	 Asian	 Mountain	 Corridor	 through	 the	 Tianshan	

Mountains	and	the	Hexi	Corridor.	It	then	extends	to	the	middle	and	lower	reaches	of	

the	Yellow	River.	 In	 the	south,	a	 second	sequence	may	be	 inferred	 from	the	 Indus	

and	northwest	 India	 through	 to	 South	 India	 and	 the	Ganges	 region.	The	 source	of	
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free	 threshing	wheat	 in	 Tibet	 could	 be	 from	 either	 the	 northern	 or	 the	 southern	

corridor.	The	pathway	by	which	barley	 spread	 east	 is	 less	 constrained.	 It	 is	 likely	

that	the	spread	of	barley	was	associated	with	the	movement	of	free	threshing	wheat,	

but	perhaps	barley	spread	at	different	rates	along	the	northern	and	southern	routes.	

	

The	earliest	sites	with	broomcorn	and	foxtail	millet	in	northern	China	before	5000	

BC	are	patchily	distributed	along	 foothills	at	 the	margins	of	 the	 loess	plateau	 (e.g.	

Liu	et	 al.,	 2009;	 Yang	et	 al.,	 2012;	 Liu	et	 al.,	 2015).	 The	 subsequent	 two	millennia	

(5000–3000	 BC)	 sees	 a	 high	 concentration	 of	 millet	 sites	 on	 the	 Loess	 Plateau,	

particularly	 along	 the	 valleys	 of	 the	Wei	 River	 and	 its	 tributaries	 (Wagner	et	 al.,	

2012).	 Broomcorn	millet	 expanded	westward	 to	 east	 Kazakhstan	 (Frachetti	et	 al.,	

2010)	in	the	late	third	millennium	BC.	It	remains	unclear,	however,	how	broomcorn	

millet	got	to	Europe	from	Central	Asia.	Foxtail	millet,	on	the	other	hand,	expanded	to	

southwest	and	southeast	China	during	the	third	millennium	BC.	Evidence	of	foxtail	

millet	 is	documented	 in	Taiwan,	Thailand	and	India	during	the	second	millennium	

BC	 (Webber,	 1991;	 Webber,	 2001;	 Castillo,	 2011).	 An	 enigmatic	 feature	 of	 the	

records	for	broomcorn	millet	is	its	earliest	apparent	occurrence	on	both	sides	of	the	

Old	World	at	 the	 same	 time.	During	 the	 sixth	and	 fifth	millennia	BC,	 some	 twenty	

sites	 from	Europe	and	 the	Caucasus	 report	broomcorn	millet	 identified	 to	 species	

level	(Hunt	et	al.,	2008).	However,	attempts	to	directly	date	some	of	these	fifth/sixth	

millennium	BC	millets	have	shown	that	they	date	to	the	Late	Bronze	Age	and	later	

periods,	therefore	the	date	at	which	Asian	millets	reached	Europe	remains	a	matter	

for	enquiry	and	ratification	(Motuzaite	Matuzeviciute	et	al.,	2013).	

	

Dietary	shifts	in	Kazakhstan	and	China	

	

Recent	works	have	 revealed	dietary	patterns	 for	 the	broader	 eastern	Central	Asia	

and	western	China	during	the	Bronze	and	Iron	Ages	(Guan	et	al.,	2007;	Zhang	et	al.,	

2010;	Zhang	and	Zhu,	2011;	Shishlina	et	al.,	 2012;	Lightfoot	et	al.,	 2013;	Ma	et	al.,	

2013a;	Ma	et	 al.,	 2013b;	Murphy	et	 al.,	 2013;	 Svyatko	et	 al.,	 2013;	 Lightfoot	et	 al.,	

2014;	Liu	et	al.,	2014;	Ventresca	Miller	et	al.,	2014;	Motuzaite	Matuzeviciute	et	al.,	
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2015a;	 Zhou	 and	 Garvie-Lok,	 2015).	 Of	 particular	 interest	 to	 this	 paper,	 dietary	

changes	 are	 documented	 on	 both	 sides	 of	 the	 mountain	 corridors	 around	 4000	

years	 ago	 in	 southern	 Kazakhstan	 and	 in	 the	 Hexi	 corridor	 of	 western	 China	

(Lightfoot	et	 al.,	 2014;	 Liu	et	 al.,	 2014;	 Motuzaite	Matuzeviciute	et	 al.,	 2015a).	 In	

seven	 cemetery	 sites	 studied	 by	 Liu	 and	 colleagues	 (2014),	 carbon	 isotope	 data	

cluster	 individual	skeletons	 into	 two	distinct	groups.	The	 individuals	 in	one	group	

correspond	to	a	diet	dominated	by	C4	plants	(millet),	while	those	in	the	other	group	

correspond	to	a	mixed	diet	containing	C3	and	C4	resources,	most	likely	wheat	and/or	

barley	 and	 millet,	 respectively.	 The	 first	 of	 these	 groups	 comprises	 all	 of	 the	

individuals	from	two	sites	dating	to	before	c.	1900	BC.	The	second	group	comprises	

virtually	 all	 of	 the	 individuals	 from	 five	 sites	 dating	 to	 after	 1900	 BC.	 It	 would	

appear	 that	 all	 of	 the	 individuals	 sampled	 at	 each	 site	 shared	 a	 common	 dietary	

pattern.	There	are	no	evident	 ‘trail-blazers’	 in	 the	novel	post-1900	BC	pattern.	Liu	

and	colleagues	(2014)	inferred	that	this	considerable	agrarian	shift	was	a	‘bottom-

up’	change,	rather	than	an	elite	led	process.	The	‘tidal	wave’	of	western	crops	after	

1900	BC	clearly	corresponded	to	an	agricultural	revolution	 in	the	Hexi	corridor.	 It	

should	 be	 noted	 that	 these	 burials	 from	 the	 Hexi	 corridor	 were	 from	 seemingly	

public	 cemeteries,	 presumably	 representing	 a	 cross-section	 of	 society.	 This	 is	

different	from	the	kurgans	in	Central	Asia	which	may	represent	elite	burials.			

	

A	similar	dietary	shift	has	been	observed	at	the	other	end	of	the	mountain	corridors,	

that	is	the	southern	part	of	Kazakhstan.	Work	done	by	Motuzaite	Matuzeviciute	and	

colleagues	 (2015a)	 showed	 that	 C4	 plants	 became	 established	 food	 sources	 in	

southern	Kazakhstan	 from	the	Middle-Late	Bronze	Age	onwards	(c.	1800	BC),	and	

were	 likely	eaten	directly	by	humans,	while	 there	 is	no	such	evidence	 in	northern	

Kazakhstan.	 Given	 the	 archaeobotanical	 evidence	 from	 eastern	 Central	 Asia,	 it	 is	

reasonable	to	attribute	the	C4	signal	to	the	consumption	of	millet(s).	Such	evidence	

constitutes	the	earliest-to-date	directly	dated	isotopic	signals	of	millet	consumption	

outside	 of	 China	 (Motuzaite	 Matuzeviciute	 et	 al.,	 2015a).	 The	 isotopic	 data	 from	

southern	 Kazakhstan	 indicate	 that	 while	 millet(s)	 was	 a	 significant	 dietary	
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component	for	a	number	of	individuals,	it	is	possible	that	they	were	not	staple	foods	

in	the	Bronze	Age	as	they	were	in	the	Iron	Age.	

	

Carbon	 and	 nitrogen	 isotope	 values	 measured	 in	 bone	 collagen	 are	 primarily	

derived	from	dietary	protein	(Hare	et	al.,	1991;	Ambrose	and	Norr,	1993;	Jim	et	al.,	

2006).	 When	 human	 consumption	 of	 animal	 protein	 is	 relatively	 high,	 collagen	

isotopic	 values	 likely	 fail	 to	 capture	 isotopic	 signatures	 from	 relatively	 lower-

protein,	carbohydrate-rich	cereal	crops,	such	as	millet,	wheat	and	barley.	However,	

in	the	context	of	naturally	isotopically	labeled	food	resources	–	for	example	C4	based	

carbohydrate	source	(millets)	and	C3	based	protein	source	(meat	fed	on	C3	plants)	-	

consideration	 of	 the	 diversity	 of	 food	 inputs	 (both	 plant	 and	 animal)	 of	 a	 given	

community	becomes	plausible.	In	the	following	section	we	apply	the	Bayesian	stable	

isotope	mixing	model	Stable	Isotope	Analysis	in	R	(SIAR	-	R	package	‘simmr’	version	

0.2)	 to	published	and	newly	obtained	δ13C	and	δ15N	data	 from	human	and	animal	

bone	collagen	and	carbonised	plant	remains	in	order	to	quantify	the	contribution	of	

different	food	protein	resources	to	human	diets	at	six	Bronze	Age	and	Iron	Age	sites	

in	southern	Kazakhstan	and	the	Hexi	corridor	in	China.		

	

Material	and	methods	

	

We	sourced	carbon	and	nitrogen	isotope	data	for	humans,	animals	and	plants	from	

the	 literature.	 All	 data	 from	 Kazakhstan	 are	 previously	 published	 (Motuzaite	

Matuzeviciute	 et	 al.,	 2015a).	 Isotopic	 results	 from	 human	 specimens	 from	 China	

have	 also	 been	 published	 by	 (Liu	 et	 al.,	 2014).	 Results	 of	 isotope	 analyses	 for	

Chinese	 animal	 and	 plant	 remains	 are	 published	 here	 for	 the	 first	 time.	 These	

samples	are	from	three	sites	in	Gansu	province	in	west	China:	Xihetan,	Huoshaogou	

and	 Sanbadongzi.	 Procedures	 for	 sampling	 and	 analysis	 follow	 those	 described	 in	

Liu	 (et	 al.,	 2014).	 Site	 information	 and	 isotope	 results	 are	 summarized	 in	Table	1	

and	2.	Site	locations	are	shown	in	Figure	1.	
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To	quantify	the	proportional	contributions	of	various	plant	and	animal	food	sources	

to	the	assimilated	dietary	protein	of	archaeological	humans,	we	used	Stable	Isotope	

Analysis	 in	 R	 (SIAR	 –	 R	 package	 ‘simmr’	 version	 0.2)	 (Parnell	 et	 al.,	 2010).	 We	

followed	 the	 best	 practices	 for	 stable	 isotope	 mixing	 models	 as	 delineated	 by	

Phillips	and	colleagues	(2014).	SIAR	is	a	Bayesian	stable	isotope	mixing	model	that	

is	 capable	 of	 accounting	 for	 error	 in	 estimates	 of	 discrimination	 factors	 (i.e.	 the 

difference	 in	 isotopic	composition	between	an	 individual’s	 tissue	and	diet:	Δ13Cdiet-

collagen	 and	 Δ15Ndiet-collagen),	 variation	 in	 source	 isotopic	 values,	 and	 different	 food	

source	elemental	concentrations	of	C	and	N.		

	

When	 diets	 include	 both	 plant	 and	 animal	 resources,	which	 have	 very	 different	 C	

and	 N	 concentrations,	 failure	 to	 employ	 a	 concentration-weighted	 model	 can	

significantly	impact	upon	results	(Phillips	and	Koch,	2002).	We	calculated	digestible	

[C]	 and	 [N]	 of	 human	 foods	 from	 the	 USDA	 Nutrient	 Database	 following	 the	

calculations	 presented	 in	 Koch	 and	 Phillips	 (2002).	 To	 avoid	 a	 severely	

underdetermined	 model,	 we	 grouped	 logically	 related	 resources	 (e.g.	 domestic	

animals)	a	priori	when	 their	 average	 isotope	 values	were	 similar;	 for	 example,	 at	

Kainar-Bulak	I	we	combined	sheep	and/or	goat	(n=11;	δ13C:	-23.2	±	0.6	‰,	δ15N:	7.7	

±	1.2	‰),	cattle	(n=4;	δ13C	:	-22.7	±	0.8	‰,	δ15N:	8.1	±	0.8	‰)	and	horse	(n=4;	δ13C:	

-23.4	±	1.2	‰,	δ15N:	6.7	±	1.8	‰)	into	one	domestic	animal	food	source	(δ13C:	-23.1	

±	0.8	‰,	δ15N:	7.6	±	1.3	‰).	The	isotopic	values	of	the	food	sources	considered	at	

each	 site	 were	 determined	 from	 animal	 and	 plant	 remains	 found	 in	 the	 same	 or	

adjacent	contemporaneous	sites	wherever	possible.	To	account	for	systematic	diet-

to-collagen	 isotopic	 difference	 we	 used	 a	 Δ13Cdiet-collagen	 value	 of	 5	 ±	 1	‰	 and	 a	

Δ15Ndiet-collagen	 of	 4-5	 ±	 1‰.	 These	 values	 are	 within	 the	 average	 range	 used	 in	

previous	 palaeodiet	 studies	 (Schoeninger,	 1985;	 Lee-Thorp	et	 al.,	 1989;	 Ambrose	

and	Norr,	1993;	Newsome	et	al.,	2004;	Hedges	and	Reynard,	2007).	Discrimination	

factors	are	also	 influenced	by	 the	 isotopic	 compositions	of	dietary	macronutrients	

(Jim	et	al.,	2006;	Froehle	et	al.,	2010).	Given	the	variation	in	C3	and	C4	resource	use	

across	our	study	area,	variable	discrimination	factors	may	ultimately	be	warranted,	

but	 we	 chose	 to	 use	 static	 values	 for	 the	 sake	 of	 simplicity;	 in	 the	 absence	 of	



	 9	

experimental	 estimates	 for	 the	 localities	 in	 our	 study,	 this	 is	 also	 the	 most	

parsimonious	choice.	Finally,	we	did	not	explicitly	consider	 the	 isotopic	 routing	of	

dietary	 protein	 to	 bone	 collagen	 in	 the	 models.	 Instead,	 we	 assume	 that	 bone	

collagen	δ13C	and	δ15N	values	are	derived	 from	dietary	protein.	Our	mixing	model	

results,	 therefore,	 are	 quantitative	 estimates	 of	 the	 proportional	 contribution	 of	

various	 plant	 and	 animal	 resources	 to	 human	 dietary	 protein.	 Because	 dietary	

routing	may	vary	with	the	protein	content	of	the	diet	(e.g.	Schwarcz	2001;	Martinez	

del	 Rio	 2009;	Newsome	 et	 al.	 2011)	 it	will	 be	 important	 to	 consider	 this	 issue	 in	

further	investigations.				

	

It	 is	 important	 to	 note,	 we	 have	 analysed	 representative	 samples	 of	 all	 potential	

food	 sources	 found	during	excavation,	however	we	cannot	 rule	out	 the	possibility	

that	other	food	sources	were	consumed	but	were	not	present	in	the	archaeological	

record.	As	δ13C	and	δ15N	values	are	not	currently	available	from	archaeological	plant	

material	in	Kazakhstan,	so	for	those	sites,	we	used	values	from	western	China;	this	

decision	involves	significant	assumptions,	which	we	address	in	the	results	section.		

	

Results	

	

Figure	2	and	Table	3	summarize	the	results	of	the	mixing	models	performed	on	six	

sites	 in	 southern	Kazakhstan	 and	western	 China.	Model	 performance	 varied	 from	

site	to	site.	In	western	China,	the	model	shows	the	most	certainty	in	Wuba,	with	all	

six	possible	dietary	sources	exhibiting	constrained	uncertainties	(see	Figure	2,	 the	

boxplots	 show	Bayesian	95%	credible	 intervals).	Wheat	and	barley	were	 less	well	

constrained	 for	 Huoshaogou,	 in	 part	 because	 they	 were	 negatively	 correlated	 (-

0.62),	meaning	that	the	model	could	not	easily	discern	between	the	sources;	model	

solutions	that	favored	wheat	excluded	barley	and	vice-versa.	This	was	also	true	for	

wheat	at	Ganguai,	which	was	negatively	correlated	with	all	of	the	other	sources,	but	

particularly	 strongly	with	Sus/Bos	 (-0.85)	 and	millet	 (-0.76).	The	best-constrained	

results	 from	Kazakhstan	were	 for	Karatuma	(see	Figure	2).	Nonetheless,	domestic	

animals	 from	 Karatuma	were	 negatively	 correlated	with	 several	 other	 sources	 at	
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Kainar-Bulak-I	 (-0.55	 with	 cervus,	 -0.52	 with	 canids,	 and	 -0.43	 with	 the	 Fertile	

Crescent	 cereals),	 making	 it	 difficult	 for	 the	 model	 to	 distinguish	 the	 difference	

among	them	in	dietary	contributions.	The	Fertile	Crescent	crops	and	caprines	were	

strongly	negatively	correlated	(-0.87)	at	Oi-Dzailau	as	well	as	Karatuma	(domestic	

animals	and	C3	crops:	-0.98),	though	millet	was	very	well	constrained	at	that	site.		

	

In	 terms	 of	 the	 proportion	 (Bayesian	 95%	 credible	 intervals),	 C4	 protein	 (likely	

millet)	 in	human	diets	became	significant	 in	the	Bronze	and	Iron	Ages	 in	southern	

Kazakhstan.	 At	 a	 population	 level,	 millet(s)	 comprises	 approximately	 10-35%	 of	

dietary	protein	at	Oi-Dzailau-VII	(1600-1400	BC),	about	20-25%	in	Karatuma	(400-

200	 BC),	 and	 35-50%	 at	 Kainar	 Bulak-I	 (200	 BC-300	 AD).	 In	 China,	 the	 millet	

contribution	to	dietary	protein	falls	during	the	Bronze	Age	from	approximately	80-

85%	at	Wuba	(2450-1950	BC)	to	35-55%	at	Huoshaogou	(1900-1300	BC)	to	just	2-

20%	 at	 Ganguai	 (1350-950	 BC).	 In	 addition	 to	 the	 uncertainties	 outlined	 above,	

these	 estimated	 proportions	 also	 reflect	 the	 individual	 differences	 within	 a	

community.	For	example,	at	Oi-Dzailau-VII,	two	individuals	that	are	mostly	enriched	

and	depleted	 in	13C	were	selected	for	 further	analyses	(see	Table	S1	for	 individual	

proportional	dietary	contributions;	individuals	selected	for	analyses	are	indicated	in	

Figure	 2).	 In	 individual	 X	 (δ13C:	 8.8‰,	 δ15N:	 22.5‰),	 millet	 contributed	 to	

approximately	 0-10%	 of	 dietary	 protein;	 and	 in	 individual	 Y	 (δ13C:	 8.8‰,	 δ15N:	

22.5‰),	the	figure	is	about	30-50%.				

	

The	people	of	southern	Kazakhstan	and	western	China	also	diverge	in	their	reliance	

on	animal	versus	plant	protein.	 In	 southern	Kazakhstan,	 animal	protein	makes	up	

the	 largest	 proportion	 of	 the	 protein	 component	 of	 human	 diets	 in	 the	 second	

millennium	BC,	 comprising	 between	 approximately	 35	 and	80%	at	Oi-Dzailau-VII.	

This	resource	probably	remained	important	in	the	first	millennium	BC	at	Karatuma	

(~60	 to	 70%)	 and	 at	 Kainar-Bulak	 I.	 When	 all	 animal	 resources	 are	 considered	

together,	animal	protein	is	as	important	as	millet	in	Kainar-Bulak	I	(approximately	

40%	of	the	dietary	protein	input).	In	contrast,	millet	 is	the	principal	food	resource	

for	 the	 inhabitants	 of	Wuba,	 comprising	more	 than	 80%	of	 human	diets	 there.	 In	
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later	periods	wheat	and/or	barley	gain	significance	 -	at	Huoshaogou	(averaging	at	

about	 15%	 and	 25%,	 respectively)	 and	 at	 Ganguai,	 wheat	 becomes	 the	 most	

important	 food	 resource	 (more	 than	 30%	 on	 average)	 followed	 most	 closely	 by	

Sus/Bos	 group	 (about	 20%	 on	 average).	 In	 all	 three	 cases,	 cereals	 contribute	 the	

most	protein	to	human	diets	in	China.	

	

One	problem	with	the	Karatuma	model	is	that	the	human	data	do	not	plot	within	the	

mixing	space	created	by	the	possible	food	sources.	This	suggests	that	an	important	

food	 resource	was	 not	 available	 for	 isotopic	 analysis	 (e.g.	 freshwater	 fish	 and/or	

wild	 plants;	 Ventresca	 Miller	 et	 al.	 2014)	 and/or	 the	 discrimination	 factors	 used	

were	incorrect.	Nonetheless,	the	result	that	terrestrial	animal	protein	comprised	the	

primary	 dietary	 protein	 intake	 for	 individuals	 from	 this	 site	 is	 consistent	 with	

previous	work	(Ventresca	Miller	et	al.,	2014).	

	

Two	issues	are	worth	consideration.	The	sample	size	of	the	plant	data	is	very	small,	

so	variations	within	the	same	crop	are	not	fully	captured.	Our	results	therefore	offer	

quantitative	predictions	as	to	the	importance	of	these	food	sources	to	human	diets	

that	we	hope	will	be	tested	as	more	data	become	available.	More	importantly,	these	

results	 are	 dependent	 on	 isotope	 values	 for	millet	 and	 barley	 from	 China.	 This	 is	

because,	to	the	best	of	our	knowledge,	there	are	hitherto	no	published	isotope	data	

for	either	modern	or	archaeological	millet	and	barley	 from	Kazakhstan.	Plant	δ15N	

values	are	related	to	multiple	factors,	such	as	the	availability	of	nutrients	and	water,	

and	 can	 therefore	 vary	 significantly	 geographically,	 so	 values	 from	 China	may	 be	

poor	 approximations	 for	 Kazakhstan.	 For	 example,	 possible	 explanations	 for	 the	

high	δ15N	values	of	the	Chinese	millets	could	be	manuring	or	aridity.	Another	study	

looking	 at	 stable	 isotope	 values	 in	 archaeological	 plant	 remains	 of	 Bronze	 Age	

samples	from	the	Eurasian	Caspian	Steppe,	to	the	east	of	Kazakhstan,	found	average	

δ13C	values	 for	C3	 and	C4	plants	of	 -26‰	and	 -12‰,	 respectively	 (Shishlina	et	 al.,	

2012).	δ15N	values	of	Lithospermum	officinale	seeds	ranged	from	9.6	to	13.0‰	and	

amaranth	seeds	had	a	value	of	6.4‰.	To	investigate	how	the	mixing	model	results	

might	 change	 if	millet	 values	 from	Kazakhstan	have	much	 lower	δ15N	values	 than	
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those	found	in	China,	we	ran	the	models	for	Oi-Dzailau,	Karatuma	and	Kainar-Bulak	

with	an	arbitrary	value	of	3‰	instead	of	9.4‰.	At	Oi-Dzailau,	this	 lower	nitrogen	

isotope	 value	 model	 predicts	 that	 millet	 still	 contributes	 a	 mean	 value	 of	 19%	

compared	to	24%	in	the	original	model,	but	the	confidence	intervals	are	larger	(8-

30%).	 	 For	Karatuma,	 there	 is	no	 change	 in	 the	 results;	millet	 still	makes	up	19	–	

25%	 of	 the	 diet.	 And	 finally,	 at	 Kainar-Bulak	 millet	 contribution	 also	 stays	

approximately	 the	 same	 (decreases	 slightly	 in	 importance	 from	 a	 mean	 value	 of	

44%	 to	 42%).	 These	 results	 suggest	 that	 the	 carbon	 isotope	 value	 is	 the	 primary	

driver,	which	makes	 sense,	 given	 that	 this	 is	 a	 concentration	weighted	model	 and	

digestible	 [N]	 from	 plants	 is	 much	 smaller	 than	 from	 animal	 food	 sources.	

Regardless,	the	pattern	of	increasing	reliance	on	millet	over	time	holds.	

	

Discussion	

	

Rapid	adoption	of	wheat/barley	and	delayed	millet	consumption	

	

The	results	of	the	mixing	models	confirm	the	dietary	shifts	previously	documented	

in	 both	 regions	 (Liu	 et	 al.,	 2014;	 Motuzaite	 Matuzeviciute	 et	 al.,	 2015a).	 A	 few	

aspects	 are	worth	 further	 consideration.	There	was	 a	 considerable	delay	between	

the	 earliest	 evidence	 for	millet	 grains	 and	 the	 adoption	 of	millet	 as	 a	 substantial	

food	 resource	 in	 southeast	 Kazakhstan.	 The	 earliest	 archaeobotanical	 evidence	 of	

millet	(from	Begash)	precedes	the	first	carbon	isotopic	evidence	of	substantial	millet	

consumption	(from	Oi-Dzailau-VII)	by	a	few	centuries.	It	is	worthy	of	note,	however,	

that	 all	 of	 the	 isotopic	 evidence	 to	 date	 post-dates	 the	 archaeobotanical	 evidence	

from	 Begash.	 Stable	 isotope	 analysis	 is	 relatively	 insensitive	 to	 minor	 dietary	

components;	 thus	 the	 isotopic	 indication	 of	 millet	 consumption	 at	 Oi-Dzailau	

suggests	that	some	individuals	consumed	significant	quantities	of	millet	and	others	

did	not.	Our	model	estimates	that	on	average	millet	contributes	approximately	10-

35%	 of	 the	 dietary	 protein.	 Nonetheless,	 this	 eating	 habits	 various	 according	 to	

individuals;	in	Oi-Dzailau,	some	consumed	millet	as	30-50%	dietary	protein	source,	

others	consumed	almost	none.		
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This	 pattern	 is	 in	 contrast	 to	 that	 observed	 in	 western	 China,	 where	 the	 earliest	

archaeobotanical	 evidence	 for	 the	 presence	 of	 C3	 cereals	 (primarily	 wheat	 and	

barley)	 in	Gansu	is	archaeologically	approximately	contemporaneous	with	isotopic	

evidence	 for	 the	 large-scale	consumption	of	C3	plant	 resources	 in	early	 the	second	

millennium	BC.	Our	data	show	that	wheat	and	barley	contributes	about	40%	(mean	

value)	 of	 the	 dietary	 protein	 in	 Huoshaogou	 and	 Ganguai,	 indicating	 that	 Fertile	

Crescent	 crops	 were	 consumed	 in	 significant	 quantities	 concurrent	 with	 or	 soon	

after	 their	 first	 appearance	 in	 this	 region.	 Although	 the	 proportion	 varies,	 all	

individuals	 from	Huoshaogou	 and	 Ganguai	 had	 comsumed	 C3	grains	 directly.	 This	

would	 support	 the	 argument	 that	 the	 Fertile	 Crescent	 crops	 were	moved	 and/or	

adopted	in	order	to	provide	a	new	staple	foodstuff	to	the	people.		

	

The	delay	of	isotopically	detectable	millet	consumption	in	Kazakhstan,	on	the	other	

hand,	 suggests	 its	 initial	 introduction	 as	 a	minor	 component	 of	 human	 diets.	 One	

interpretation	is	that	millet	was	not	first	introduced	to	Central	Asia	as	a	staple	food,	

but	 for	 other	 reasons,	 perhaps	 ritual	 use	 or	 as	 an	 indictor	 of	 wealth	 or	 status.	

Indeed,	some	of	the	earliest	evidence	of	millet	was	from	a	burial	context	rather	than	

from	a	settlement,	indicating	that	it	may	well	have	had	a	special	significance	beyond	

subsistence.	 Frachetti	 (2015),	 for	 example,	 argued	 that	 the	 crop	 remains	 from	

Begash,	were	the	‘seeds	for	the	soul’.	It	could	be	the	case	that	some	foodstuffs	would	

be	specifically	associated	with	special	ritual	events,	such	as	the	key	life	history	rites	

de	 passage.	 Nonetheless,	 these	 events	 typically	 emphasize	 timelessness	 and	

ancestry,	and	do	not	offer	an	immediate	conceptual	link	with	either	novel	or	normal	

cereal	grains.	It	is	also	entirely	possible	that	millet	was	exploited	as	a	risk	reduction	

strategy	or	in	the	context	of	a	seasonal	mobility	model.	Thus,	there	are	a	variety	of	

reasons	why	an	introduced	crop	may	remain	a	minor	component	of	the	diet,	and	we	

currently	 lack	 the	 full	 range	 of	 contextual	 evidence	 necessary	 to	 infer	 the	 most	

plausible	reason	in	this	case.	
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Our	data	also	reveal	different	strategies	of	consumption	of	dietary	animal	protein.	

Contemporary	people	in	Kazakhstan	and	western	China	diverge	in	their	reliance	on	

animal	versus	plant	protein.	Animal	protein	derived	from	domestic	animals	or	game	

consistently	 made	 a	 substantial	 contribution	 to	 human	 diets	 in	 Kazakhstan.	 In	

western	China,	on	 the	other	hand,	while	meat	consumption	 increased	relatively	 in	

the	period	after	1900	BC,	various	crops	(either	C3	or	C4)	were	consistently	the	most	

important	 food	 resource	 for	 the	 population	 in	 this	 region.	 The	 dietary	 shift	

documented	 in	 Gansu	 was	 probably	 connected	 with	 the	 direct	 consumption	 of	

wheat	and	barley.	

	

Our	data	allows	us	 to	 contrast	 the	dietary	 situations	at	 each	end	of	 the	 ‘Mountain	

Corridors’,	 i.e.	 the	 Hexi	 Corridor	 and	 southern	 Kazakhstan.	 In	 between	 the	 two	

regions	lies	Xinjiang	(Xinjiang	Uyghur	Autonomous	Region).	Human	isotopic	values	

from	several	sites	in	this	region	have	been	published	(Zhang	and	Li,	2006;	Zhang	et	

al.,	2009;	Zhang	et	al.,	2010;	Zhang	and	Zhu,	2011).	The	current	evidence	suggests	

that	the	dietary	choices	in	Xinjiang	vary	from	community	to	community	during	the	

second	millennium	BC.	It	is	seemingly	the	millet	consumers	lived	side	by	side	with	

communities	 consumed	 more	 meat	 and	 C3	 foodstuff	 and	 less	 millet.	 Published	

isotopic	 values	 derived	 from	 animal	 remains	 are	 limited	 at	 the	moment	 however.	

Future	isotopic	research	to	combine	human	and	animal	data	may	be	anticipated.								

	

Agencies	of	translocations	of	wheat/barley	and	millet	

	

The	 gradual	 adoption	 of	 millet	 in	 southern	 Kazakhstan	 serves	 to	 highlight	 the	

rapidity	 of	 the	 adoption	 of	 wheat	 and	 barley	 in	 west	 China.	 During	 the	 second	

millennium	BC,	wheat	and	barley	were	both	growing	in	the	fields	and	being	widely	

consumed	 in	 significant	 quantities	 in	 Gansu,	 constituting	 a	 revolution	 in	 eating	

habits.	 By	 contrast,	 the	 first	 appearance	 of	millet	 currently	 pre-dates	 the	 isotopic	

evidence	of	consumption	on	a	significant	scale	in	Kazakhstan.		
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Liu	 et	 al.	 (2014)	 argued	 that	 the	 rapid	 adoption	 of	wheat	 and/or	 barley	 in	Gansu	

could	be	understood	in	the	context	of	social	and	ecological	challenges	in	relation	to	

the	 expansion	 of	 human	 settlement	 to	 arid	 northwest	 China.	 In	 Gansu,	 the	 global	

drought	 event	 of	 the	 time	 was	 complicated	 by	 a	 widespread	 weakening	 of	 the	

summer	monsoon	between	2500	and	2000	BC	(An	et	al.,	2005a;	An	et	al.,	2005b).	A	

plausible	 explanation	 of	 the	 rapid	 dietary	 change	 in	 this	 region	 is	 that	 the	 early	

colonizers	faced	a	series	of	ecological	and	social	challenges:	the	threat	of	challenging	

environments;	 the	 threat	 of	 famine;	 and	 population	 pressure	 in	 spatially	 limited	

arable	 lands.	 In	 the	 face	of	 such	 challenges,	 conservative	 food	choices	may	 simply	

not	have	been	sustainable.	 In	addition,	 the	data	 lend	support	to	the	argument	that	

wheat	and/or	barley	were	 initially	 introduced	 to	northwest	China	as	a	new	staple	

food	to	serve	the	needs	of	the	poor	majority,	rather	than	to	the	rich	minority.	

	

By	 contrast,	 dietary	 conservatism	 may	 be	 more	 in	 evidence	 elsewhere.	 In	

Kazakhstan,	 although	 the	 archaeobotanical	 evidence	 indicates	 that	 millet	 was	

present	 from	 the	 late	 third	millennium	BC,	 the	 current	 isotopic	 evidence	 suggests	

that	millet	was	not	consumed	on	a	significant	scale	until	almost	a	few	hundred	years	

later.	In	the	later	case,	the	newly	developed	millet	eating	habits	various	according	to	

individuals.	 The	 individual	 variation	 and	 the	 time	 lag	 between	 the	 initial	

introduction	of	millet	and	its	subsequent	consumption	on	a	significant	scale,	could	

be	explained	by	the	initial	use	being	connected	with	a	minority,	for	example	elites,	

ritual	specialists,	or	seasonal	mobile	groups.		

	

Conclusion		

	

In	 this	 paper	 we	 apply	 Bayesian	 stable	 isotope	 mixing	 models	 to	 published	 and	

newly	obtained	isotopic	data	in	order	to	quantitatively	estimate	the	contribution	of	

different	food	resources	to	human	diets;	and	we	consider	the	complexity	of	human	

food	strategies	at	the	both	ends	of	the	mountain	corridors:	southern	Kazakhstan	and	

the	Hexi	corridor	in	western	China.	Our	results	contrast	the	rapid	adoption	of	wheat	

and/or	barley	in	the	Hexi	Corridor	with	the	gradual,	incremental	adoption	of	millet	
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in	southern	Kazakhstan	during	the	second	millennium	BC.	The	people	who	lived	in	

the	Hexi	 Corridor	 consumed	wheat	 and/or	 barley	 on	 a	 considerable	 scale	 shortly	

after	the	crops	were	introduced	into	the	region.	In	Kazakhstan,	millet	consumption	

is	 not	 isotopically	 detectable	 until	 around	 a	 few	 hundred	 years	 after	 the	 first	

archaeobotanical	 evidence	 from	 the	 region.	 In	 addition,	 the	 people	 in	 southern	

Kazakhstan	 and	western	 China	 diverge	 in	 their	 reliance	 on	 animal,	 as	 opposed	 to	

plant,	 protein.	 These	 patterns	 are	 best	 explained	 as	 different	 driving	 forces	

facilitating	 the	 eastward	 expansion	 of	 the	 Fertile	 Crescent	 crops	 and	 westwards	

expansion	of	millet.	
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Figure	1.	Maps	showing	location	and	topography	of	the	study	region	and	the	sites	

from	 Kazakhstan	 and	 China	 discussed	 in	 this	 paper	 (see	 Table	 1	 for	 detailed	

information).	1	-	Oi-Dzailau	VII,	2	-		Kyzyl	Bulak	I,	3	-	Kainar	Bulak,	4	-		Karatuma,	5	-		

Huoshaogou,	 6	 -	 	 Ganguai,	 7	 -	 	 Sanbadongzi,	 8	 -	 	 Donghuishan,	 9	 -	 	 Wuba,	 10	 -		

Xihetan.	
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Figure	 2.	 Summary	 of	 stable	 isotope	 data	 input	 into	 the	 mixing	 models	 and	 the	

mixing	model	results	for	sites	in	Kazakhstan	(upper	panel)	and	China	(lower	panel).	

Within	 each	 panel,	 sites	 are	 ordered	 from	 oldest	 (left)	 to	 youngest	 (right).	 The	

results	are	labeled	as	where	human	bones	are	recovered.	Diet	composition	data	are	

drawn	from	the	nearest	possible	locations	(see	Table	1	and	Table	2	for	details).	
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Table	1.	Site	information	derived	from	Liu	et	al.	(2014)	and	Motuzaite	
Matuzeviciute	et	al.	(2015).	A	star	(*)	indicates	age	intervals	based	on	radiocarbon	
determinations	from	human	bones,	while	no	star	implies	ages	based	on	cultural	
context.	'n'	is	the	number	of	radiocarbon	dates.	
	
Site	 Region	 Period	 Cultural	group	 Age,	years	BC/AD	

Oi-Dzailau	VII	 S	Kazakhstan	 Late	Bronze	Age	 Andronovo	 1600-1400BC*	(n=2)	

Kyzyl-Bulak	 S	Kazakhstan	 Late	Bronze	Age	 Andronovo	 1750-1500BC*	(n=2)	

Kainar	Bulak-I	 S	Kazakhstan	 Early	Iron	Age	 Wusun/Hunic	 200BC-300AD*	(n=2)	

Karatuma	 S	Kazakhstan	 Early	Iron	Age	 Wusun	 400-100BC*(n=3)	

Huoshaogou	 W	China	 Bronze	Age	 Shanma/Siba	 1900-1300*	(n=8)	

Ganguai	 W	China	 Bronze	Age	 Siba	 1350-950*	(n=1)	

Sanbadongzi	 W	China	 Bronze	Age	 Siba	 1500-1000	

Wuba	 W	China	 Bronze	Age	
Banshan/Machang/Qijia/Transitional	
type	 2450-1950*	(n=4)	

Xihetan	 W	China	 Bronze	Age	 Qijia/Siba	 2300-1000	

	

Table	2.		Isotope	and	diet	composition	data	used	in	modeling.	We	made	the	
following	assumptions	about	the	isotope	values	of	food	sources	and	humans:	(1)	
δ13Cmuscle-δ13Ccollagen	-	4‰;	(2)	δ13Cdiet	=	δ13Ccollagen	-	5‰;	(3)	δ15Ndiet	=	δ15Ncollagen	-	
5‰	(Oi-Dzailau)	or	-	4‰	(all	other	sites).	Digestible	[C]	and	[N]	were	calculated	
using	the	USDA	Nutrient	Database	following	Koch	and	Phillips	(2002).	‘SD’	stands	
for	standard	deviation;	and	‘n’	stands	for	number	of	samples.	
	

Site	 Source	
δ13C	
‰	

SD		
δ13C	‰	 [C]	 δ15N	‰	

SD		
δ15N	‰	 [N]	 n	

Oi-Dzailau-VII	

Oi-Dzailau	VII	 Humans	
-
15.6	 1.8	 na	 13.8	 0.6	 na	 11	

Huoshaogou	 Hordeum	vulgare	
-
24.2	 1.0	 0.46	 4.4	 1.0	 0.02	 1	

Huoshaogou	 Panicum	miliaceum	 -9.9	 1.0	 0.47	 9.4	 1.0	 0.02	 1	
Oi-Dzailau,	Shimkent,	
Kyzyl-Bulak-I	 Caprine	

-
22.9	 0.5	 0.61	 7.9	 1.5	 0.09	 3;	1	from	each	site	

Kainar-Bulak-I	

Kainar-Bulak-I	 Humans	
-
12.6	 1.4	 na	 12.1	 1.4	 na	 17	

Huoshaogou	 Hordeum	vulgare	
-
24.2	 1.0	 0.46	 4.4	 1.0	 0.02	 1	

Huoshaogou	 Pancum	miliaceum	 -9.9	 1.0	 0.47	 9.4	 1.0	 0.02	 1	

Kainar-Bulak-I	 Canid	
-
20.3	 2.5	 0.60	 12.3	 1.5	 0.11	 2	

Kainar-Bulak-I	 Domestic	animals	
-
23.1	 0.8	 0.60	 7.6	 1.3	 0.09	 Ovis/Capra	=	11;	Bos	=	4;	Equus		=	4	

Kainar-Bulak-I	 Cervus	
-
23.1	 1.0	 0.54	 5.9	 1.0	 0.14	 1	

Karatuma	

Karatuma	 Humans	
-
15.4	 1.0	 na	 12.3	 1.6	 na	 39	

Huoshaogou	 Hordeum	vulgare	
-
24.2	 1.0	 0.46	 4.4	 1.0	 0.02	 Hordeum	valgare	=	1	

Huoshaogou	 Panicum	miliaceum	 -9.9	 1.0	 0.47	 9.4	 1.0	 0.02	 1	

Kainar-Bulak-I	 Domestic	animals	

-
22.7
8	 0.97	 0.60	 8.12	 1.42	 0.09	 Ovis/Capra	=	13;	Bos	=	4	

Wuba	
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Wuba	 Humans	 -7.4	 0.9	 na	 9.2	 1.1	 na	 56	

Donghuishan	 Triticum	eastivum	 -24.6	 1.0	 0.46	 5.8	 1.0	 0.02	 1	

Donghuishan	and	Xihetan	

Setaria	italic	
/Panicum	
miliaceum	 -10.1	 0.4	 0.47	 7.9	 1.2	 0.02	 Setaria	italic	=2;	Panicum	miliaceum	=1	

Xihetan	 Canid	 -15.7	 2.8	 0.60	 10.0	 1.2	 0.11	 7	

Xihetan	 Bos	 -22.2	 1.1	 0.61	 5.7	 0.8	 0.09	 7	

Xihetan	 Caprine	 -20.1	 1.5	 0.61	 7.1	 1.3	 0.09	 14	

Xihetan	 Cervus	 -22.5	 0.3	 0.54	 3.3	 1.0	 0.14	 5	

Huoshaogou	

Huoshaogou	 Humans	
-
12.0	 1.9	 na	 12.0	 1.3	 na	 30	

Huoshaogou	 Triticum	eastivum.	
-
20.3	 1.0	 0.46	 8.0	 1.0	 0.02	 1	

Huoshaogou	 Hordeum	vulgare	
-
24.2	 1.0	 0.46	 4.4	 1.0	 0.02	 1	

Huoshaogou	 Panicum	miliaceum	 -9.9	 1.0	 0.47	 9.4	 1.0	 0.02	 1	

Huoshaogou	 Canid	
-
22.6	 0.8	 0.60	 10.7	 1.1	 0.11	 10	

Huoshaogou	 Domestic	animals	
-
22.1	 1.1	 0.61	 8.4	 2.1	 0.09	

Ovis/Capra	=	41;	Bos	=	28;	Sus	=	7;	Equus	
=	4	

Ganguai	

Ganguai	 Humans	
-
15.3	 1.5	 na	 11.6	 0.9	 na	 30	

Huoshaogou	 Triticum	eastivu	
-
20.3	 1.0	 0.46	 8.0	 1.0	 0.02	 1	

Huoshaogou	 Hordeum	vulgare	
-
24.2	 1.0	 0.46	 4.4	 1.0	 0.02	 1	

Huoshaogou	 Panicum	miliaceum	 -9.9	 1.0	 0.47	 9.4	 1.0	 0.02	 1	

Sanbadongzi	 Caprine/Cervus	
-
21.7	 0.9	 0.59	 6.6	 1.6	 0.10	 Ovis/Capra	=	16;	Cervus	=	8	

Sanbadongzi	 Sus/Bos	
-
21.1	 1.5	 0.63	 9.2	 1.1	 0.07	 Sus	=	10;	Bos	=	10	

	
Table	3.	Estimated	proportional	dietary	contributions	of	various	animal	and	plant	food	resources	to	archaeological	humans	
with	Bayesian	credible	intervals.	
		 		 		 		 95%	credible	interval	 		

Site	 Source	 Mean	 SD	 2.5%	 97.5%	 Range	

Oi-Dzailau-VII	
		 Wheat/barley		 0.17	 0.10	 0.02	 0.39	 0.37	
		 Millet	 0.24	 0.06	 0.13	 0.36	 0.23	
		 Sheep/goat	 0.59	 0.12	 0.35	 0.79	 0.44	
	 sd	δ13C	 1.97	 0.58	 1.15	 3.38	 	

	 sd	δ15N	 0.60	 0.48	 0.03	 1.76	 	

Kainar-Bulak-I	
		 Wheat/barley	 0.14	 0.10	 0.02	 0.37	 0.35	
		 Millet	 0.44	 0.03	 0.37	 0.50	 0.13	
		 Dog	 0.11	 0.05	 0.03	 0.22	 0.19	

		
Domestic	animals	

(Sheep/goat/cattle/horse)	 0.17	 0.10	 0.02	 0.39	 0.37	
		 Deer	 0.14	 0.08	 0.02	 0.32	 0.30	
		 sd	δ13C	 1.33	 0.33	 0.80	 2.09	 	

	 sd	δ15N	 1.25	 0.33	 0.70	 1.98	 	

Karatuma	
		 Wheat/barley	 0.12	 0.08	 0.02	 0.31	 0.29	
		 Millet	 0.23	 0.02	 0.20	 0.26	 0.06	

		
Domestic	animals	
(Sheep/goat/cattle)	 0.65	 0.08	 0.45	 0.76	 0.32	

		 sd	δ13C	 0.61	 0.24	 0.09	 1.06	 	
		 sd	δ15N	 0.75	 0.38	 0.06	 1.50	 	

Wuba	
		 Wheat	 0.01	 0.01	 0.00	 0.03	 0.03	



	 26	

		 Millet	 0.82	 0.01	 0.80	 0.84	 0.04	
		 Dog	 0.01	 0.01	 0.00	 0.02	 0.02	
		 Cattle	 0.01	 0.01	 0.00	 0.03	 0.03	
		 Sheep/goat	 0.01	 0.01	 0.00	 0.03	 0.02	
		 Deer	 0.14	 0.01	 0.12	 0.17	 0.05	
		 sd	δ13C	 0.80	 0.12	 0.54	 1.04	 	
		 sd	δ15N	 0.88	 0.16	 0.58	 1.21	 	

Huoshaogou	
		 Wheat	 0.14	 0.09	 0.02	 0.43	 0.41	
		 Barley	 0.26	 0.09	 0.06	 0.41	 0.35	
		 Millet	 0.45	 0.04	 0.35	 0.52	 0.17	
		 Dog	 0.03	 0.02	 0.01	 0.07	 0.07	

		
Domestic	animals	

(Sheep/cattle/pig/horse)	 0.11	 0.08	 0.01	 0.31	 0.30	
		 sd	δ13C	 1.85	 0.29	 1.38	 2.51	 	
		 sd	δ15N	 1.05	 0.36	 0.17	 1.67	 	

Ganguai	
		 Wheat	 0.34	 0.23	 0.03	 0.82	 0.79	
		 Barley	 0.17	 0.11	 0.02	 0.42	 0.40	
		 Millet	 0.11	 0.05	 0.02	 0.20	 0.18	
		 Sheep/goat/deer	 0.18	 0.10	 0.03	 0.38	 0.35	
		 Pig/cattle	 0.21	 0.10	 0.02	 0.40	 0.38	
		 sd	δ13C	 1.43	 0.25	 1.01	 1.97	 	
		 sd	δ15N	 0.46	 0.26	 0.03	 0.96	 		

	
	


