18,279 research outputs found

    Magma behaving brittly

    Get PDF
    Explosive volcanic eruptions can produce multiple hazards, including widespread dispersal of volcanic ash and pyroclastic density currents. Magma fragmentation generates the explosive force during eruptions and the style of fragmentation determines the nature and scale of the eruption and its hazards1. Brittle fragmentation is a signature of the most energetic eruptions that produce large hazard footprints. While long-associated with viscous, silica-rich magmas, a mechanistic understanding of brittle fragmentation in low-viscosity magmas remains elusive. Two studies in Nature Geoscience explore the fragmentation of mafic magmas and find that brittle behaviour in low-viscosity melts may be more common than previously thought, occurring prior to and following fragmentation by fluidal processes. Namiki and colleagues2 show that rapid cooling of the outer surface of liquid clasts combined with continuing expansion of gas trapped inside the still-hot interior promotes secondary brittle fragmentation within lava fountains (Fig. 1). Taddeucci and colleagues3 suggest that fracturing and healing of low-viscosity melts may precede many explosive mafic eruptions

    A Serratia marcescens PigP Homolog Controls Prodigiosin Biosynthesis, Swarming Motility and Hemolysis and Is Regulated by cAMP-CRP and HexS

    Get PDF
    Swarming motility and hemolysis are virulence-associated determinants for a wide array of pathogenic bacteria. The broad host-range opportunistic pathogen Serratia marcescens produces serratamolide, a small cyclic amino-lipid, that promotes swarming motility and hemolysis. Serratamolide is negatively regulated by the transcription factors HexS and CRP. Positive regulators of serratamolide production are unknown. Similar to serratamolide, the antibiotic pigment, prodigiosin, is regulated by temperature, growth phase, HexS, and CRP. Because of this co-regulation, we tested the hypothesis that a homolog of the PigP transcription factor of the atypical Serratia species ATCC 39006, which positively regulates prodigiosin biosynthesis, is also a positive regulator of serratamolide production in S. marcescens. Mutation of pigP in clinical, environmental, and laboratory strains of S. marcescens conferred pleiotropic phenotypes including the loss of swarming motility, hemolysis, and severely reduced prodigiosin and serratamolide synthesis. Transcriptional analysis and electrophoretic mobility shift assays place PigP in a regulatory pathway with upstream regulators CRP and HexS. The data from this study identifies a positive regulator of serratamolide production, describes novel roles for the PigP transcription factor, shows for the first time that PigP directly regulates the pigment biosynthetic operon, and identifies upstream regulators of pigP. This study suggests that PigP is important for the ability of S. marcescens to compete in the environment. © 2013 Shanks et al

    Periodicity in Volcanic Gas Plumes: A Review and Analysis

    Get PDF
    Persistent non-explosive passive degassing is a common characteristic of active volcanoes. Distinct periodic components in measurable parameters of gas release have been widely identified over timescales ranging from seconds to months. The development and implementation of high temporal resolution gas measurement techniques now enables the robust quantification of high frequency processes operating on timescales comparable to those detectable in geophysical datasets. This review presents an overview of the current state of understanding regarding periodic volcanic degassing, and evaluates the methods available for detecting periodicity, e.g., autocorrelation, variations of the Fast Fourier Transform (FFT), and the continuous wavelet transform (CWT). Periodicities in volcanic degassing from published studies were summarised and statistically analysed together with analyses of literature-derived datasets where periodicity had not previously been investigated. Finally, an overview of current knowledge on drivers of periodicity was presented and discussed in the framework of four main generating categories, including: (1) non-volcanic (e.g., atmospheric or tidally generated); (2) gas-driven, shallow conduit processes; (3) magma movement, intermediate to shallow storage zone; and (4) deep magmatic processes

    Insights into the dynamics of mafic magmatic-hydromagmatic eruptions from volatile degassing behaviour: The Hverfjall Fires, Iceland

    Get PDF
    The style and intensity of hydromagmatic activity is governed by a complex interplay between the relative volumes of magma and water that interact, their relative viscosities, the depth of subsurface explosions, the substrate properties, and the vent geometry. Fundamental questions remain, however, regarding the role of magmatic vesiculation in determining the dynamics of magma-water interaction (MWI). Petrological reconstructions of magmatic degassing histories are commonly employed to interpret the pre- and syn-eruptive conditions during ‘dry’ magmatic eruptions, but the application of similar techniques to hydromagmatic activity has not yet been fully explored. In this study, we integrate glass volatile measurements (S, Cl, H2O and CO2) with field observations and microtextural measurements to examine the relationship between degassing and eruptive style during the Hverfjall Fires fissure eruption, Iceland. Here, coeval fissure vents produced both ‘dry’ magmatic (Jarðbaðshólar scoria cone complex) and variably wet hydromagmatic (Hverfjall tuff ring) activity, generating physically distinct pyroclastic deposits with contrasting volatile signatures. Matrix glass volatile concentrations in hydromagmatic ash (883 ± 172 [1σ] ppm S; 0.45 ± 0.03 [1σ] wt% H2O; ≤20 ppm CO2) are consistently elevated relative to magmatic ash and scoria lapilli (418 ± 93 [1σ] ppm S; 0.12 ± 0.48 [1σ] wt% H2O; CO2 below detection) and overlap with the range for co-erupted phenocryst-hosted melt inclusions (1522 ± 127 [1σ] ppm S; 165 ± 27 [1σ] ppm Cl). Measurements of hydromagmatic glasses indicate that the magma has degassed between 17 and 70% of its initial sulfur prior to premature quenching at variably elevated confining pressures. By comparing volatile saturation pressures for both magmatic and hydromagmatic glasses, and how these vary through the eruptive stratigraphy, we place constraints on the conditions of MWI. Crucially, our data demonstrate that the magma was already vesiculating when it encountered groundwater at depths of 100–200 m, and that the external water supply was sufficient to maintain MWI throughout the eruption with no significant vertical or lateral migration of the fragmentation surface. We propose that development of an in-vent water-sediment slurry provides a mechanism through which the elevated confining pressures of ~1.6–2.6 MPa (or up to 6 MPa accounting for uncertainty in CO2 below analytical detection) could be maintained and buffered throughout the eruption, whilst enabling vertical mixing and ejection of fragmented juvenile and lithic material from a range of depths. Importantly, these results demonstrate that the volatile contents of hydromagmatic deposits provide valuable records of (1) the environment of MWI (e.g., groundwater versus surface water, vertical migration of the fragmentation level) and (2) the state of the magma at the time of fragmentation and quenching. We further suggest that the volatile content of tephra glasses provides a reliable alternative (or additional) indicator of a hydromagmatic origin, particularly for reduced Ocean Island Basalts where late-stage volatile saturation and degassing (S, H2O) occurs over a pressure range relevant to typical MWI environments.Postgraduate scholarship from University of Bristol AXA Research Fund Royal Society Wolfson Merit Award Royal Society University Research Fellowship New Researchers Award from the Geologists’ Associatio

    Contrasting mechanisms of magma fragmentation during coeval magmatic and hydromagmatic activity: the Hverfjall Fires fissure eruption, Iceland

    Get PDF
    Growing evidence for significant magmatic vesiculation prior to magma-water interaction (MWI) has brought into question the use of ‘diagnostic’ features, such as low vesicularities and blocky morphologies, to identify hydromagmatic pyroclasts. We address this question by quantifying co-variations in particle size, shape and texture in both magmatic and hydromagmatic deposits from the Hverfjall Fires fissure eruption, Iceland. Overlapping vesicularity and bubble number density distributions measured in rapidly quenched magmatic and hydromagmatic pyroclasts indicate a shared initial history of bubble nucleation and growth, with substantial vesiculation prior to MWI. Hydromagmatic fragmentation occurred principally by brittle mechanisms, where the length scale and geometry of fracturing was controlled by the bubble population. This suggests that the elevated fragmentation efficiency of hydromagmatic deposits is driven, at least in part, by brittle disintegration of vesicular pyroclasts due to high thermal stress generated during rapid cooling. In this way, the shape and size distributions of hydromagmatic pyroclasts, both critical input parameters for ash dispersion models, are strongly influenced by the dynamics of vesiculation prior to MWI. This result underlines the need to analyse multiple grain-size fractions to characterise the balance between magmatic and hydromagmatic processes. During the Hverfjall Fires eruption, the external water supply was sufficient to maintain MWI throughout the eruption, with no evidence for progressive exhaustion of a water reservoir. We suggest that both the longevity and the spatial distribution of MWI were determined by the pre-existing regional hydrology and represent continuous interaction between a propagating dike and a strong groundwater flow system hosted within permeable basalt lavas

    Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    Get PDF
    Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor) or a larger protein (α-amylase). Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a) degradation of protein/recycling amino acids, (b) overall transcription/translation repression, and (c) oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases

    Determination of buprenorphine, norbuprenorphine, naloxone, and their glucuronides in urine by liquid chromatography–tandem mass spectrometry

    Get PDF
    Publisher Copyright: © 2021 The Authors. Drug Testing and Analysis published by John Wiley & Sons Ltd.A liquid chromatography–tandem mass spectrometry method for the simultaneous quantification of buprenorphine (BUP), norbuprenorphine (NBUP), naloxone (NAL), and their glucuronide conjugates BUP-G, NBUP-G, and NAL-G in urine samples was developed. The method, omitting a hydrolysis step, involved non-polar solid-phase extraction, liquid chromatography on a C18 column, electrospray positive ionization, and mass analysis by multiple reaction monitoring. Quantification was based on the corresponding deuterium-labelled internal standards for each of the six analytes. The limit of quantification was 0.5 μg/L for BUP and NAL, 1 μg/L for NAL-G, and 3 μg/L for NBUP, BUP-G, and NBUP-G. Using the developed method, 72 urine samples from buprenorphine-dependent patients were analysed to cover the concentration ranges encountered in a clinical setting. The median (maximum) concentration was 4.2 μg/L (102 μg/L) for BUP, 74.7 μg/L (580 μg/L) for NBUP, 0.9 μg/L (85.5 μg/L) for NAL, 159.5 μg/L (1370 μg/L) for BUP-G, 307.5 μg/L (1970 μg/L) for NBUP-G, and 79.6 μg/L (2310 μg/L) for NAL-G.Peer reviewe

    Characterization of Stability of Non-Negative Matrix Factorization Models: An Application to Single-Cell Data

    Get PDF
    The non-negative matrix factorization (NMF) is a powerful machine learning technique used in mathematics, computer science, and data science. This technique has applications in a wide range of fields including recommender systems, image processing, signal processing, machine learning and genetics. Recently, NMF has gained popularity in the analysis of single-cell gene expression data to identify cell types and gene expression patterns. In this thesis, we have studied the NMF, its rank estimation, classification, and stability using both simulated data and real single-cell gene expression data. We have designed two simulated data sets with desired features and tested two seeding methods, eight NMF algorithms and five rank estimation criteria. Additionally, a real single-cell gene expression data has been used to further characterize the NMF algorithms. We have also investigated the stability of NMF, first over the sample size consideration and then on initialization. The detailed conditions that have been revealed by this thesis may generate practical impact in directing the appropriate use of NMF in analyzing single-cell gene expression data

    Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems

    Full text link
    © 2016 American Chemical Society. In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now feasible with fluorescence microscopy (epifluorescence and CLSM imaging with DNA, RNA, EPS, and protein and lipid stains) and electron microscopy imaging (ESEM). Importantly, thorough identification of microbial fingerprints in drinking water biofilms is achievable with DNA sequencing techniques (the 16S rRNA gene-based identification), which have revealed a prevalence of previously undetected bacterial members. Technologies are now moving toward in situ monitoring of biomass growth in distribution networks, including the development of optical fibers capable of differentiating biomass from chemical deposits. Taken together, management of biofilm growth in water distribution systems requires an integrated approach, starting from the treatment of water prior to entering the networks to the potential implementation of "biofilm-limiting" operational conditions and, finally, ending with the careful selection of available technologies for biofilm monitoring and control. For the latter, conventional practices, including chlorine-chloramine disinfection, flushing of DWDS, nutrient removal, and emerging technologies are discussed with their associated challenges
    corecore