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Abstract 12 

The style and intensity of hydromagmatic activity is governed by a complex interplay between 13 

the relative volumes of magma and water that interact, their relative viscosities, the depth of 14 

subsurface explosions, the substrate properties, and the vent geometry. Fundamental questions 15 

remain, however, regarding the role of magmatic vesiculation in determining the dynamics of 16 

magma-water interaction (MWI). Petrological reconstructions of magmatic degassing histories 17 

are commonly employed to interpret the pre- and syn-eruptive conditions during ‘dry’ 18 

magmatic eruptions, but the application of similar techniques to hydromagmatic activity has 19 

not yet been fully explored. In this study, we integrate glass volatile measurements (S, Cl, H2O 20 

and CO2) with field observations and microtextural measurements to examine the relationship 21 

between degassing and eruptive style during the Hverfjall Fires fissure eruption, Iceland. Here, 22 

coeval fissure vents produced both ‘dry’ magmatic (Jarðbaðshólar scoria cone complex) and 23 

variably wet hydromagmatic (Hverfjall tuff ring) activity, generating physically distinct 24 

pyroclastic deposits with contrasting volatile signatures. Matrix glass volatile concentrations 25 

in hydromagmatic ash (883 ± 172 [1σ] ppm S; 0.45 ± 0.03 [1σ] wt% H2O; ≤20 ppm CO2) are 26 

consistently elevated relative to magmatic ash and scoria lapilli (418 ± 93 [1σ] ppm S; 0.12 ± 27 

0.48 [1σ] wt% H2O; CO2 below detection) and overlap with the range for co-erupted 28 
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phenocryst-hosted melt inclusions (1522 ± 127 [1σ] ppm S; 165 ± 27 [1σ] ppm Cl). 29 

Measurements of hydromagmatic glasses indicate that the magma has degassed between 17 30 

and 70% of its initial sulfur prior to premature quenching at variably elevated confining 31 

pressures.  32 

By comparing volatile saturation pressures for both magmatic and hydromagmatic 33 

glasses, and how these vary through the eruptive stratigraphy, we place constraints on the 34 

conditions of MWI. Crucially, our data demonstrate that the magma was already vesiculating 35 

when it encountered groundwater at depths of 100–200 m, and that the external water supply 36 

was sufficient to maintain MWI throughout the eruption with no significant vertical or lateral 37 

migration of the fragmentation surface. We propose that development of an in-vent water-38 

sediment slurry provides a mechanism through which the elevated confining pressures of ~1.6–39 

2.6 MPa (or up to 6 MPa accounting for uncertainty in CO2 below analytical detection) could 40 

be maintained and buffered throughout the eruption, whilst enabling vertical mixing and 41 

ejection of fragmented juvenile and lithic material from a range of depths.  Importantly, these 42 

results demonstrate that the volatile contents of hydromagmatic deposits provide valuable 43 

records of (1) the environment of MWI (e.g., groundwater versus surface water, vertical 44 

migration of the fragmentation level) and (2) the state of the magma at the time of 45 

fragmentation and quenching. We further suggest that the volatile content of tephra glasses 46 

provides a reliable alternative (or additional) indicator of a hydromagmatic origin, particularly 47 

for reduced Ocean Island Basalts where late-stage volatile saturation and degassing (S, H2O) 48 

occurs over a pressure range relevant to typical MWI environments. 49 
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1. Introduction 54 

Hydromagmatic eruptions are generated by the explosive interaction of magma with external 55 

water. In contrast to ‘dry’ basaltic eruptions that are driven purely by the rapid exsolution and 56 

expansion of magmatic volatiles (Mangan and Cashman, 1996; Parfitt, 1998; Mangan et al., 57 

2014), the energy released during magma-water interaction (MWI) is further influenced by the 58 

efficiency of heat exchange with water and/or steam. Energetic water vaporisation/expansion 59 

during MWI causes extensive melt fragmentation, which is enhanced by the brittle response of 60 

silicate melt to rapid quenching (e.g., Lorenz, 1975; Peckover et al., 1973; Colgate and 61 

Sigurgeirsson, 1973; Sheridan and Wohletz, 1983; Kokelaar, 1986; Wohletz, 1986; 62 

Zimanowski et al., 1991, 1997; Büttner et al., 2002; Van Otterloo et al., 2015; Cashman and 63 

Scheu, 2015; Liu et al., 2015, 2017). High vesicularities and bubble number densities within 64 

some hydromagmatic pyroclasts demonstrate that significant vesiculation can take place prior 65 

to MWI (Mastin et al., 2004; Murtagh et al., 2011; Rausch et al., 2015; Liu et al., 2015, 2017), 66 

with the shape and size distributions of fragmented particles determined by the bubble 67 

population at the time of quenching and brittle fragmentation. Magma ascent histories and 68 

degassing budgets can be reconstructed from the volatile concentrations preserved within 69 

pristine melt inclusions and the matrix glass of erupted pyroclasts (e.g., Þórðarson et al., 1996; 70 

Metrich et al., 1991, 2010; Þórðarson and Self, 2003; Wallace 2003; Edmonds, 2008; Metrich 71 

and Wallace, 2008; Self et al., 2008; Johnson et al., 2010; Wallace and Edmonds, 2011; Hartley 72 

et al., 2014; Wallace et al., 2015). Yet, similar geochemical approaches to explore the dynamics 73 

of MWI remain comparatively under-utilised.   74 

Mixed eruptions including both magmatic and hydromagmatic phases (either at a single 75 

vent or at different vents along an active fissure) are common in Iceland due to the abundance 76 

of external water sources within volcanic environments. Icelandic tephra erupted during 77 

hydromagmatic and magmatic activity have distinct residual volatile compositions, with matrix 78 
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glass sulfur concentrations (SMG) consistently elevated within hydromagmatic pyroclasts 79 

(Þórðarson et al., 1996, 2001, 2003; Óladóttir et al., 2008; Sigmarsson et al., 2013; Schipper et 80 

al., 2015). The Laki fissure eruption of 1783–84 provides an illustrative example of a mixed 81 

eruption: hydromagmatic tephra comprises ~20% of the total tephra volume, with the 82 

remainder produced by ‘dry’ Strombolian activity. Laki hydromagmatic glasses contain 83 

variable but elevated SMG (490–1260 ppm; average 933 ± 212 ppm), whilst Strombolian glasses 84 

contain uniformly low SMG concentrations (418–640 ppm; average 490 ± 82 ppm; Þórðarson 85 

et al., 1996). These residual sulfur concentrations correspond to contrasting degassing 86 

efficiencies of 25–70% and 62–75% for hydromagmatic and magmatic activity, respectively, 87 

relative to the initial sulfur content of 1677 ± 225 ppm preserved in olivine-hosted melt 88 

inclusions (SMI; Metrich et al., 1991; Þórðarson et al., 1996).  89 

The progressive exsolution of sulfur with decreasing magma overpressure is well-90 

recorded in exposed subglacial volcanic edifices (tuyas) in Iceland (Moore and Calk, 1991) 91 

and elsewhere (e.g., British Columbia; Dixon et al., 2002; Edwards et al., 2009; Hungerford et 92 

al., 2014), which exhibit decreasing SMG with increasing elevation. Glassy hyaloclastite 93 

samples erupted at water depths >400 m (equivalent to 4 MPa hydrostatic pressure) contain 94 

SMG ≥ 500 ppm, whilst the glassy margins of all subaerial lava flow units capping tuyas are 95 

degassed to SMG ≤ 200 ppm (Moore and Calk, 1991). Similarly, glassy pillow basalt rims 96 

erupted under variable water depths off the Reykjanes Ridge (SE Iceland) indicate that sulfur 97 

is largely retained in the melt until ~200 m water depth (~2 MPa hydrostatic pressure) after 98 

which sulfur degassing takes place rapidly (Moore and Schilling, 1973). The elevated SMG 99 

values observed in hydromagmatic tephra are therefore consistent with higher quench 100 

pressures, whereby rapid cooling of magma during MWI arrests degassing and thus preserves 101 

the residual melt volatile concentration at the depth of interaction (Þórðarson et al., 1996; 102 

Mastin et al., 2004).  103 
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Hawaiian basalts exhibit a similar dichotomy in volatile content between magmatic and 104 

hydromagmatic tephras, but with the transition displaced to slightly lower S contents than the 105 

more iron-rich Icelandic basalts (Moore et al., 1965; Moore and Fabbi 1971; Mastin et al., 106 

2004; Schipper et al., 2010). Tephra from the Keanakāko’i eruption of Kīlauea (where magma 107 

interacted with a surface lake; Mastin et al., 1997) have SMG between 250 and 600 ppm, which 108 

are again elevated relative to those of equivalent ‘dry’ Kīlauean lava fountain deposits (<100–109 

300 ppm; e.g., Swanson and Fabbi, 1973; Mastin et al., 2004; Sides et al., 2014; Moussallam 110 

et al., 2016; Helz et al., 2017). Similarly, eruptive products from the submarine (<1400 ppm S) 111 

and subaerial (100–200 ppm S) rift zones of Mauna Loa exhibit similarly contrasting volatile 112 

contents, with glassy submarine pillow rims also preserving decreasing S and Cl concentrations 113 

with reduced water depths (Davis et al., 2003).  114 

In this study, we interrogate volatile data from magmatic and hydromagmatic pyroclasts 115 

erupted contemporaneously during the Hverfjall Fires, Iceland, to (a) reconstruct the degassing 116 

history of magma erupted under different eruptive styles, (b) determine the magma vesicularity 117 

at the time of MWI and quenching, (c) calculate the fragmentation pressure/depth of MWI, and 118 

(d) explore how changing conditions of magma ascent and fragmentation may relate to 119 

transitions in eruptive behaviour. From these data, we consider sulfur degassing in ocean island 120 

basalts (OIB) more generally, and evaluate the use of volatiles as geochemical indicators of 121 

hydromagmatic processes. 122 

 123 

2. Geological setting 124 

The Hverfjall Fires (~2500 ka) was a major rifting episode within the Krafla Volcanic System, 125 

located in Iceland's Northern Volcanic Zone (Fig. 1; Þórarinsson, 1979; Sæmundsson, 1991; 126 

Mattsson and Höskuldsson, 2011; Liu et al., 2017). Effusive activity occurred intermittently 127 

along a NNE-SSW aligned fissure, which extended both north and south of the central Krafla 128 
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caldera within a graben (Sæmundsson, 1991). Most activity was concentrated at the 129 

southernmost tip of the fissure, in Mývatn, where coeval ‘dry’ magmatic and hydromagmatic 130 

explosive activity formed part of the Jarðbaðshólar scoria cone complex and Hverfjall tuff ring 131 

(and surrounding deposits), respectively. Hydromagmatic activity at the Hverfjall vent was 132 

initiated and maintained throughout the eruption by the interaction of magma with groundwater 133 

aquifers, with the spatial distribution of magma-water interaction (MWI) determined by the 134 

pre-existing hydrological flow regime in the region (Liu et al., 2017).  135 

The hydromagmatic deposits from Hverfjall comprise fine-grained ash fall and massive 136 

to finely-stratified base surge units, in addition to the complex proximal stratigraphy within the 137 

tuff ring edifice itself (Sæmundsson, 1991; Mattsson and Höskuldsson, 2011). In total, 138 

hydromagmatic activity generated approximately 0.15 ± 0.02 km3 of pyroclastic material, of 139 

which 0.08 ± 0.01 km3 comprise an extensive fine-grained unconsolidated fall deposit formed 140 

during the initial stage of the eruption (Liu et al., 2017). Later eruptive phases were dominated 141 

by base surges with runout distances of 3–5 km. Proximal surge exposures show a clear 142 

evolution from poorly-sorted matrix-supported massive lapilli-tuff basal units (e.g., H8.9 A; Fig. 143 

1c, Table 1) through to well-sorted clast-supported accretionary lapilli-rich intermediate and 144 

upper units intercalated with thinly-laminated fine ash (e.g., H8.9 F), suggesting a transition 145 

from water-saturated to drier emplacement conditions. Large angular blocks and bombs of 146 

dense basaltic lavas indicate considerable disruption of the basement substrate by subsurface 147 

explosions, although lithic clasts comprise only a minor proportion of medial to distal ash fall 148 

deposits (< 10%; Liu et al., 2017). The presence of lithic material throughout stratigraphic 149 

sections indicates continuous country rock excavation (e.g., Lorenz, 1986, 2003) and/or 150 

recycling and ejection of earlier disrupted material (Graettinger et al., 2014; Valentine et al., 151 

2015, 2017; Lefebvre et al., 2012, 2016). However, the homogeneous lithology of basement 152 

rocks and the potential for progressive upward mixing prior to ejection means that the lithic 153 
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assemblage provides little constraint on the absolute depth of disruption (e.g., Agustín-Flores 154 

et al., 2014; Valentine et al., 2017). 155 

‘Dry’ magmatic activity occurred from a vent within the Jarðbaðshólar cone complex 156 

(located ~3 km north of Hverfjall along the fissure strike), during which predominantly 157 

Strombolian activity produced a coarse, scoriaceous deposit (with a more limited dispersal 158 

distance of ~1.5 km) and subsequent lava flows (Mattsson and Höskuldsson, 2011; Liu et al., 159 

2017). Interbedded magmatic and hydromagmatic deposits indicate that the Hverfjall and 160 

Jarðbaðshólar vents were active simultaneously (Mattsson and Höskuldsson, 2011). However, 161 

clear differences in the total grain size distribution (TGSD) of erupted tephra highlight 162 

contrasting fragmentation efficiencies at the two vents. Specifically, the opening 163 

hydromagmatic fall deposit comprises 97 wt% ash-sized material (<2 mm), of which 20 wt% 164 

is fine ash (<63 µm). In contrast, ash-sized material comprises <12% of the total mass of 165 

magmatic fall deposits (Liu et al., 2017). 166 

The four deposit types – hydromagmatic fall, hydromagmatic surges, magmatic fall and 167 

lava flows – are rarely observed together because of the limited spatial extent of the magmatic 168 

units. However, where multiple units are exposed together (e.g., Fig. 1d), stratigraphic 169 

relationships suggest that magmatic and hydromagmatic vents were active contemporaneously 170 

(Mattsson and Höskuldsson, 2011; Liu et al., 2017). Figure 1d illustrates a representative 171 

depositional sequence observed in the field. Although the deposition of hydromagmatic 172 

material (pyroclastic fall followed by base surges) appears in many sections to have begun prior 173 

to the onset of magmatic fall, the presence of coarse magmatic lapilli directly above the Hekla-174 

3 silicic tephra in sections proximal to Jarðbaðshólar suggest that the two vents may have 175 

initiated near-synchronously. Finely-stratified surge deposits overlying magmatic fall and lava 176 

flow units, even in proximal locations, indicates that hydromagmatic explosive activity 177 

continued at the Hverfjall vent after activity ceased at Jarðbaðshólar (Liu et al., 2017). 178 
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Overlapping vesicularity and bubble number density distributions measured in rapidly 179 

quenched magmatic and hydromagmatic pyroclasts (from the Hverfjall Fires as well as mafic 180 

eruptions more generally) indicate a shared initial history of bubble nucleation and growth, 181 

with substantial vesiculation prior to MWI (Mastin et al., 2004; Murtagh and White, 2013; Liu 182 

et al., 2017). The elevated fragmentation efficiency of hydromagmatic deposits has been 183 

attributed, at least in part, to brittle disintegration of vesicular pyroclasts due to high thermal 184 

stress generated during fast cooling (Mastin et al., 2004; Liu et al., 2015, 2017; Van Otterloo 185 

et al., 2015), although rapid steam expansion resulting from coarse mixing of magma and water 186 

also contributes to fine fragmentation by molten fuel coolant interaction (Wohletz, 1986; 187 

Zimanowski et al., 1991, 1997). 188 

 189 

3. Material and methods 190 

Fieldwork and sampling locations are described in detail in Liu et al. (2017); the subset of 191 

samples used in this study is listed in Table 1. Unconsolidated tephra samples were dried, 192 

sieved in phi (φ) intervals, and size fractions between -1φ (2–4 mm) and 4φ (64–125 µm) 193 

mounted in polished grain mounts. Thin sections were made through two 16–32 mm lapilli 194 

(from Jarðbaðshólar) that exhibit clear quenched rims, and through consolidated surge deposit 195 

samples comprising a range of grain sizes from -2φ (4–8 mm) to fine ash (<64 µm). No large 196 

lapilli > 8 mm were found in the unconsolidated hydromagmatic tephra deposits (Liu et al., 197 

2017). 198 

Major element and dissolved sulfur (S) and chlorine (Cl) concentrations of matrix glass 199 

and olivine- and plagioclase-hosted melt inclusions (MI) were measured on carbon-coated 200 

polished grain mounts using the JEOL 8530F Field Emission Gun electron microprobe (FEG-201 

EPMA) at the University of Bristol, UK. Analyses were performed under operating conditions 202 

of 20 kV accelerating voltage and 40 nA beam current, using a defocused beam (10 µm) to 203 
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minimise sodium mobility. A combination of mineral and glass standards were used for 204 

calibration. Repeat analyses of Smithsonian basaltic glass reference materials yielded average 205 

values of 1395 ± 38 [1σ] ppm S (VG2, Juan de Fuca Ridge, NMNH 111240-52) and 168 ± 35 206 

[1σ] ppm S (VGA-99, Mahaopuhi lava lake, Hawai’i, NMNH 113498-1), and established that 207 

no instrumental drift corrections were needed. Counting times for each element were 10 s for 208 

Na, Si, Al, K and Ca, 30 s for Mg and Fe, 40 s for P, 60 s for Mn, and 120 s for S and Cl, over 209 

a total analysis time of 120 s. Detection limits were 26 ppm (S) and 16 ppm (Cl) under the 210 

chosen operating conditions. The oxidation state of sulfur in matrix glass (magmatic and 211 

hydromagmatic) was determined from the wavelength of the S kα peak, according to the 212 

method of Carroll and Rutherford (1988; see Appendix A for full details). 213 

To back-calculate liquid lines of descent, reverse fractional crystallisation models were 214 

initiated using the average hydromagmatic glass composition and isobaric crystallisation 215 

pressures of 0.001, 2, 4, and 6 kbar. Calculations were performed at the FMQ oxygen fugacity 216 

buffer using the mineral-melt equilibrium models of Danyushevsky (2001) for olivine, 217 

plagioclase and clinopyroxene and with 𝐾𝑑𝐹𝑒−𝑀𝑔
𝑜𝑙−𝑙𝑖𝑞

 modelled after Toplis (2005). Criteria for 218 

the exclusion of mineral phases from the crystallising assemblage were Fo > 92 mol% (olivine), 219 

An > 92 mol% (plagioclase), and Mg# >90 (clinopyroxene). 220 

H2O and CO2 concentrations in matrix glasses were determined by Fourier Transform 221 

Infrared Spectroscopy (FTIR) at the University of Bristol, UK. FTIR spectra were measured 222 

on doubly-polished glass wafers, with between 2 and 5 spot analyses per sample (Table S2, 223 

supplementary information). The window size was kept constant at 100×100 µm2 for all 224 

hydromagmatic wafers (except one at 75×75 µm2). Peak heights (absorbances) at 3550 cm-1 225 

[H2O] and 1520 and 1430cm-1 [CO3
2- doublet] were measured using a linear baseline, and 226 

converted to absolute concentrations using the Beer Lambert Law, 𝑐 =
𝑀𝐴𝜆

𝜌𝑑𝜀
, where M is the 227 

molecular weight of H2O or CO2, A is the measured absorbance at the band of interest (𝜆), 𝜌 is 228 
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the density of the basalt glass [2.76 g cm3], d is the thickness of the glass wafer, and 𝜀 is the 229 

molar absorption coefficient (H2O: 63 L mol-1 cm-1; Dixon et al., 1995; CO2: 375 L mol-1 cm-230 

1; Fine and Stolper, 1986). Sample thicknesses were measured to a precision of ~3 µm using a 231 

micrometer, and ranged from 38 to 148 µm.  232 

 233 

4. Results 234 

Ash particles from both hydromagmatic and magmatic deposits are mostly glassy 235 

sideromelane, with phenocrysts of plagioclase, clinopyroxene, and olivine, in order of 236 

decreasing abundance (Fig. 2a). Phenocrysts are present either as individual crystals or, more 237 

commonly, within two- or three-phase glomerocrysts, and contain rare small melt inclusions 238 

(MIs). Fe-Cu-Ni sulfide globules (<1–30 µm in diameter) are often found within the interstitial 239 

glass/MIs of glomerocrysts and free phenocrysts, and, less frequently, in the matrix glass (Fig. 240 

2b). 241 

Matrix glasses are tholeiitic basalt in composition, containing 50.6 ± 0.2 [1σ] wt% SiO2 242 

and 5.68 ± 0.13 [1σ] wt% MgO (Table S1, supplementary information). Magmatic glasses 243 

(from Jarðbaðshólar) are compositionally similar to hydromagmatic glasses (from Hverfjall), 244 

but are very slightly more primitive (higher MgO content) and lie along modelled reverse 245 

fractional crystallisation paths from the average hydromagmatic composition (Fig. 3b-d). Melt 246 

inclusions (MIs) trapped within olivine and plagioclase phenocrysts have major element 247 

compositions that are near-indistinguishable from the surrounding matrix glass, indicating melt 248 

isolation during a very late-stage of fractional crystallisation (Fig. 3). Close compositional 249 

agreement between olivine- and plagioclase-hosted inclusions, particularly in diagnostic 250 

elements such as Fe, Ca and Al, suggest negligible post-entrapment modification due to host 251 

crystallisation (no corrections have been applied). Many of the phenocrysts that host MIs 252 
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(particularly olivine) have partially to fully skeletal morphologies, suggesting rapid crystal 253 

growth (Fig. 2c).  254 

The dissolved sulfur concentration preserved in matrix glass (SMG) represents the 255 

residual sulfur remaining in the melt at the time of quenching. Quenching refers to the rapid 256 

cooling of melt to below the glass transition temperature, where the diffusivity of a volatile 257 

phase (such as S) becomes sufficiently slow that the melt concentration becomes essentially 258 

static on the timescales of interest. Figure 4 shows a clear offset in the distributions of SMG 259 

between hydromagmatic (Hverfjall) and magmatic (Jarðbaðshólar) deposits. SMG in magmatic 260 

ash varies between 200 and 500 ppm (average: 418 ± 93 [1σ] ppm). SMG is elevated within 261 

hydromagmatic ash, and spans a much larger range, from 550 to 1450 ppm (average: 883 ± 262 

172 [1σ] ppm). MIs preserved in all mineral phases record dissolved sulfur concentrations, SMI 263 

= 1400–1700 ppm (average: 1522 ± 127 [1σ] ppm) and chlorine concentrations, ClMI = 145–264 

200 ppm (average:  165 ± 27 [1σ] ppm; Figs. 4, 5 black crosses; Table S1, supplementary 265 

information). Assuming MIs were trapped prior to the onset of low pressure S or Cl degassing, 266 

SMI and ClMI represent the maximum S and Cl contents of the magma at higher pressures. The 267 

most undegassed hydromagmatic glasses have sulfur concentrations that overlap those of co-268 

erupted phenocryst-hosted melt inclusions. Cl concentrations in both magmatic and 269 

hydromagmatic matrix glasses (ClMG) are also generally indistinguishable from those of melt 270 

inclusions (Fig. 5), although the range of ClMG in magmatic samples extends to lower values 271 

(~110 ppm), indicating partial loss.  272 

To test the relationship between macroscopic evidence of degassing (vesicles) and 273 

preserved volatile concentrations, we classified each compositionally analysed grain into one 274 

of three classes – dense, vesicular, or bubble shard – depending on its vesicularity and 275 

morphology, following the criteria defined by Liu et al., (2017). We find no clear correlation 276 

between the measured SMG and the particle vesicularity within individual samples: dense glass 277 
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fragments, vesicular particles, and bubble shards show the same range of sulfur concentrations 278 

(Fig. 4). Temporally, a stratigraphic sequence through the surge deposits (site 8.9 A–F, where 279 

A refers to the basal sample; Fig. 4) suggests a slight shift towards higher SMG, concurrent with 280 

a sedimentological transition from poorly-sorted matrix-supported lapilli-tuff  (A) to well-281 

sorted clast-supported alternations of fine ash and accretionary lapilli (C–F). 282 

 Lapilli from Jarðbaðshólar cone deposits (MQ1) exhibit marked cross-sectional 283 

variations in vesicle texture. Whilst clast rims typically preserve small spherical vesicles within 284 

a glassy matrix (although with noticeable heterogeneity in spatial distribution), cores are highly 285 

vesicular with large, irregularly-shaped vesicles that are often interconnected and record 286 

expansion, coalescence and deformation. The transition between the two textural regions is 287 

often abrupt. Interstitial glass within clast cores is frequently finely microcrystalline, although 288 

regions of sideromelane can still be identified. These variations in vesicularity and vesicle 289 

morphology are accompanied by a similarly abrupt decrease in SMG from rim to core, coincident 290 

with the sharp textural boundary (Fig. 6; Table S1, supplementary information). Measured 291 

profiles on three clasts show that while sulfur concentrations in the outermost (quenched) clast 292 

rim lie between 375 and 500 ppm, concentrations in the centre of the same clasts along a near-293 

linear core to rim profile are typically 200–350 ppm and exhibit more marked local 294 

heterogeneity. 295 

H2O concentrations in hydromagmatic matrix glasses from the basal fall deposit range 296 

from 0.40 to 0.51 wt%, with an average of 0.45 ± 0.03 [1σ] wt% (Fig. 7; Table S2, 297 

supplementary information). Scatter in the measured concentrations increases with decreasing 298 

polished sample thickness (Fig. S1, supplementary information), and the thickest glass wafers 299 

(>100 µm) yield an average H2O concentration of 0.43 ± 0.016 [1σ] wt%. Dissolved water is 300 

present only in the form of hydroxyl (OH-), with no detection of a molecular water peak at 301 

1630 cm-1. This result agrees with previous FTIR studies of basaltic glass showing that at low 302 
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dissolved water contents (<0.5 wt%) hydroxyl groups are the only detectable hydrogen-bearing 303 

species (Stolper et al., 1982; Dixon et al., 1988), and provides evidence that the water is 304 

magmatic in origin. CO2 is below detection (< ~4 ppm) in most samples, but is measurable at 305 

14–19 ppm in four of the thickest sample wafers (>100 µm). Magmatic matrix glasses contain 306 

much lower H2O concentrations of 0.12 ± 0.48 [1σ] wt%, with CO2 below detection in all 307 

samples (Fig. 7). 308 

Sulfur species in matrix glasses from the Hverfjall Fires tephra are sulfide-dominated 309 

(Fig. S2; Table S3, supplementary information), with S6+/Stotal ranging from <0.11 310 

(hydromagmatic) and 0.04 to 0.49 (magmatic). The results are independent of the dwell time 311 

used in the analytical procedure (Appendix A, supplementary information). Using the XANES 312 

calibration of Jugo et al., (2010), measured sulfur speciation ratios yield average oxygen 313 

fugacities of FMQ +0.4 ± 0.17 (1σ; hydromagmatic) and FMQ +0.6 ± 0.33 (1σ; magmatic).  314 

 315 

5. Discussion 316 

5.1 Reconstructing the degassing processes 317 

Volatile concentrations in erupted tephra provide valuable insights into the pressure/depth and 318 

timing (relative to the onset of magmatic vesiculation) of magma-water interaction, particularly 319 

when interpreted in the context of clast textures. Taking the highest SMI value to represent the 320 

maximum pre-degassing sulfur concentration in the melt, the range of sulfur contents retained 321 

within hydromagmatic matrix glasses indicate that the magma had lost between 17 and 70% of 322 

its initial sulfur prior to quenching. This result demonstrates that the magma was already 323 

vesiculating at the time of MWI, consistent with previous interpretations based on clast textures 324 

and morphologies in this (Liu et al., 2017) and other hydromagmatic eruptions (e.g., Capelas 325 

tuff cone, Azores [shallow marine], Mattsson, 2010; Keanakāko’i, Hawai’i [shallow 326 

sublacustrine], Mastin et al., 2004; Askja, Iceland [subglacial], Graettinger et al., 2013).  327 
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Magmatic matrix glasses record substantially lower residual volatiles (70–83% 328 

degassed) than hydromagmatic tephra of equivalent size, despite sharing near-identical initial 329 

melt volatile concentrations (from MIs; Fig. 4) and overlapping oxidation states (from S 330 

speciation; Fig. S2). This dichotomy indicates near-surface divergence in degassing processes 331 

between hydromagmatic and magmatic vents, and could be accounted for by several potential 332 

mechanisms, including (a) post-fragmentation degassing; (b) kinetic fractionation; or (c) 333 

differences in the quench pressure (depth). Distinguishing the dominant mechanism has 334 

implications for our understanding of the respective environments and mechanisms of 335 

fragmentation (Wallace and Edmonds, 2011; Wallace et al., 2015).  336 

Fragmentation and quenching are not always contemporaneous. Volatile losses 337 

following primary fragmentation depend on the time for individual clasts to cool to below the 338 

glass transition interval, Tg, which is in turn controlled by clast size and cooling rate (Dingwell 339 

and Webb, 1989; Lloyd et al., 2013). Importantly, the analyses shown in Figures 4 and 5 are 340 

from ash-sized particles <1 mm in diameter (unless stated), for which whole-clast cooling 341 

timescales are rapid (< 0.1 s, based on simple conductive models; Porritt et al., 2012; Helo et 342 

al., 2013). Indeed, fast cooling rates of 103.7 – 105.1 K s-1 have been determined for angular 343 

submarine hyaloclastite fragments 0.5–1 mm in diameter (Helo et al., 2013). Moreover, SMG is 344 

independent of particle size in the range 0.06 to 4 mm (and the quenched rims of 16–32 mm 345 

magmatic lapilli; Fig. S3, supplementary information; note that no hydromagmatic lapilli of 346 

this grain size were found for comparison), and thus does not appear to be determined by 347 

cooling-rate. The cooling timescale for the cores of larger magmatic clasts is more protracted, 348 

however. Brittle surface cracks on many coarse lapilli and bombs indicate that the interior of 349 

the clasts remained hot enough to accommodate continued degassing and bubble expansion 350 

after the clast exterior had already cooled to below Tg (Wright et al., 2007; Porritt et al., 2012). 351 

Co-variation in SMG and vesicle texture in core-to-rim profiles of magmatic lapilli (16–32 mm 352 
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diameter) provides geochemical evidence for extensive post-fragmentation degassing of clast 353 

interiors (Fig. 6). Partial Cl degassing of some magmatic matrix glasses also reflects shallow 354 

post-fragmentation volatile losses, as Cl is soluble to low pressures in basaltic melts (Fig. 5). 355 

Importantly, however, SMG values in both rapidly-quenched lapilli rims and in ash-sized 356 

particles from the Jarðbaðshólar scoria cones are still lower than in the most degassed 357 

hydromagmatic matrix glasses from Hverfjall. Post-fragmentation degassing can therefore 358 

account for the range of 200–500 ppm S in magmatic matrix glasses, but an alternative process 359 

is required to fully explain the difference in final volatile concentrations between magmatic 360 

and hydromagmatic tephra. 361 

Under conditions of disequilibrium degassing, where the magma ascent rate is faster 362 

than the timescale required for volatile species to diffuse into bubbles, volatile concentrations 363 

in matrix glasses are determined by the relative diffusivities of each component (kinetic 364 

fractionation) rather than by their respective solubilities. Sulfur has a low diffusivity relative 365 

to H2O, which diffuses very rapidly in basaltic melts (Freda et al., 2005; Zhang and Stolper, 366 

1991), and would therefore be preferentially elevated relative to H2O in melt that had 367 

experienced disequilibrium degassing. Hydromagmatic matrix glasses are elevated in both S 368 

and H2O compared to magmatic tephra of equivalent size (Fig. 7), suggesting that the 369 

difference in residual sulfur content cannot be explained entirely by kinetic fractionation. 370 

However, without corresponding measurements of initial H2O concentrations (e.g., from melt 371 

inclusions) or quantitative determinations of volatile diffusivities at the relevant conditions, 372 

disequilibrium degassing cannot be ruled out entirely and indeed may have contributed to the 373 

observed variability in SMG. 374 

Volatile solubilities and fluid-melt partition coefficients are strongly pressure-375 

dependent (e.g., Dixon et al., 1997; Newman and Lowernstern, 2002; Moretti et al., 2003; 376 

Papale et al., 2006; Witham et al., 2012; Wallace et al., 2015; Edmonds and Wallace, 2017). 377 
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Under conditions of equilibrium degassing, and assuming no post-fragmentation losses, 378 

elevated volatile concentrations at the time of quenching are consistent with a higher saturation 379 

pressure (Psat). Calculated H2O-CO2 saturation pressures, using the VolatileCalc 380 

thermodynamic model of Newman and Lowenstern (2002), are 1.6–2.6 MPa for Hverfjall 381 

hydromagmatic glasses, with an average of 2.1 ± 0.3 [1σ] MPa, if we assume conservatively 382 

that CO2 is present at 0 ppm when below the FTIR detection limit. To evaluate the uncertainty 383 

in saturation pressures introduced by variation in CO2 below the FTIR detection limit, we 384 

repeat the calculations taking CO2 to be present at either 5 or 20 ppm; these calculations yield 385 

higher average pressures of 3.2 ± 0.3 or 6.5 ± 0.3 [1σ] MPa, respectively. Thus, for a given 386 

H2O content, saturation pressures are extremely sensitive to the CO2 content, such that varying 387 

CO2 between 0 and 20 ppm produces a ~4 MPa change in Psat, whilst variation in H2O over the 388 

measured range of 0.40–0.51 wt% accounts for only 1 MPa change.  389 

Closed-system degassing paths calculated using the SolEx multi-phase C-O-H-S model 390 

with full compositional parameterisation (Fig. 8; Witham et al., 2012) indicate a similar, but 391 

slightly higher, range of saturation pressures of 2.2–7.0 MPa for Hverfjall hydromagmatic 392 

glasses (initiated using the average melt composition from Table S1, and initial volatile 393 

concentrations of 1.2 wt% CO2, 0.6 wt% H2O, 1500 ppm S, and 160 ppm Cl; Neave et al., 394 

2014; Hartley et al., 2014). Oxygen fugacity was fixed at the minimum value of NNO=0.5. 395 

Calculated H2O-CO2 saturation pressures obtained using either model are independent of 396 

temperature over the tested range of 1000–1150˚C.  397 

In contrast, the lower volatile contents of magmatic glasses from Jarðbaðshólar suggest 398 

the erupted melt was degassing to near 1 atm with respect to H2O and CO2 (Fig. 7). Continued 399 

post-fragmentation degassing of S and Cl in magmatic tephra, however, demonstrates that not 400 

all volatile components had fully equilibrated to atmospheric conditions at the time of 401 

fragmentation.  402 
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Differences in the relative confining pressure at the time of fragmentation and quenching could 403 

produce the contrasting residual volatile abundances in magmatic and hydromagmatic glasses. 404 

Note that the hydromagmatic glasses analysed for both S and H2O are at the upper end of the 405 

range of SMG measured at Hverfjall (dense sideromelane grains were preferentially selected), 406 

suggesting that the calculated saturation pressures are upper bounds. The total range of SMG 407 

concentrations (550–1450 ppm) records quenching over a large pressure interval, from <2.6 408 

MPa (or <6 MPa if uncertainty in CO2 below the detection limit is considered) to near-409 

atmospheric conditions. Calculated degassing paths indicate that H2O does not begin to degas 410 

significantly from the melt until <6 MPa (Fig. 8), thus implying that the Hverfjall magma 411 

underwent a rapid burst of vesiculation in the uppermost few hundred metres of ascent. 412 

Interestingly, the SolEx solubility model, initiated using the Hverfjall Fires magma 413 

composition, predicts that sulfur would begin to partition into a fluid phase at ~40–50 MPa (far 414 

earlier than H2O) and have degassed 95% of its initial sulfur by 16 MPa (Fig. 8). This result is 415 

in poor agreement with our measured degassing efficiencies, which suggest up to 90% of the 416 

initial sulfur is retained until <6 MPa. This discrepancy between measured and modelled sulfur 417 

contents could indicate that sulfur is degassing under a conditions of significant disequilibrium. 418 

However, S and Cl fluid-melt partitioning in SolEx is calibrated based on more oxidised, 419 

hydrous basaltic melts (∆NNO= +1.6 – +2.1, >3 wt% H2O; Lesne et al., 2011; Witham et al., 420 

2012) than either Hverfjall or Kīlauea (Moussallam et al., 2016; Helz et al., 2017), in which 421 

sulfur will be present largely in the form of S6+ and H2O will begin to exsolve at higher pressure. 422 

Sulfur solubility in basaltic melts is strongly dependent on fO2 (see Section 4.2), and further 423 

experimental and petrological work is needed to calibrate thermodynamic models for sulfur 424 

degassing in reduced basaltic magmas. 425 

 426 

5.2 Was the Hverfjall Fires magma sulfide-saturated? 427 
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Dissolved sulfur concentrations in reduced basaltic melts [S2-] are buffered by the stability of 428 

immiscible Fe-S-O (sulfide) phases (Edmonds and Mather, 2017). Sulfur solubility is also 429 

strongly coupled to the melt FeO content as S2- dissolves primarily by complexing with Fe2+ 430 

(Mathez, 1976; Wallace and Carmichael, 1992; O’Neill and Mavrogenes, 2002; Liu et al., 431 

2007, Moretti and Baker, 2008), such that Fe-rich magmas can dissolve greater amounts of 432 

sulfur before reaching sulfide saturation compared to Fe-poor magmas (Wallace and 433 

Carmichael, 1992). For the Hverfjall Fires matrix glass composition (14.6 ± 0.16 [1σ] wt% 434 

FeO), the theoretical sulfur content at sulfide saturation (SCSS) is ~1800 ppm (Wallace and 435 

Carmichael, 1992; Mavrogenes and O’Neill, 1999; Wallace and Edmonds, 2011), which is in 436 

good agreement with the maximum sulfur concentration measured in melt inclusions (1737 437 

ppm). Together with the presence of metastable Fe-Cu-Ni sulfide globules in erupted tephra 438 

(Fig. 2b), the sulfur concentrations of melt inclusions and the least degassed matrix glasses 439 

suggest that the parent magma was at, or close to, sulfide saturation throughout crystallisation 440 

and magma ascent. Late-stage degassing, in contrast, drives oxidation and progressive 441 

resorption of sulfides (Patten et al., 2013; Edmonds and Mather, 2017). 442 

 443 

5.3 Depth of magma-water interaction during the Hverfjall Fires 444 

Combined with additional H2O and CO2 measurements, our sulfur dataset places quantitative 445 

constraints on the pressures recorded by melt quenching. If quenching and fragmentation are 446 

taken to be contemporaneous during MWI (e.g. Liu et al., 2015, 2017), calculated quench 447 

pressures reflect the depth of fragmentation. This pressure-to-depth conversion requires us to 448 

consider the most appropriate pressure gradient. For the case of hydrostatic pressure, saturation 449 

pressures of 1.6–2.6 MPa (VolatileCalc) translate to fragmentation depths of 158–258 m, with 450 

an average of 210 ± 30 m. However, assuming lithostatic pressure and taking the density of the 451 

overlying country rock to be ~2.76 g cm-3 (dense basaltic lava flows), measured saturation 452 
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pressures translate to shallower fragmentation depths of 57–94 m, with an average of 74 ± 11 453 

m (Fig. 9). It is worth re-emphasising that Psat is highly sensitive to CO2, particularly at the low 454 

pressures of interest; therefore, the upper bound of saturation pressures may extend as high as 455 

~6 MPa (20 ppm CO2) due to uncertainty in the absolute CO2 concentration below the FTIR 456 

detection limit. 457 

Interestingly, the depth distribution for lithostatic pressure is consistent with 458 

experimentally-determined optimum explosion depths of ~100 m, and maximum depths for 459 

subaerial tephra ejection of ~200 m (Graettinger et al., 2014; Valentine et al., 2014). Similar 460 

explosion depths of 30–115 m were derived for large blocks found in ejecta within natural 461 

deposits, assuming near-optimal scaled depths (0.004 m/J1/3) and explosion energies 462 

determined from the deposit volume and calculated ejection velocities (Graettinger and 463 

Valentine, 2017). Notably, these depth estimates are sensitive to both assumptions made during 464 

the calculation of ejection velocities and uncertainties on the mass ejected, and so the observed 465 

ejecta could easily reflect deeper source locations by 10s of metres (Graettinger and Valentine, 466 

2017), thus potentially improving further the correspondence with the saturation pressures 467 

calculated here. However, dissolved volatile concentrations remain elevated throughout the 468 

eruption stratigraphy (Fig. 4), and it is difficult to envisage how lithostatic pressure (or close 469 

to) could be maintained throughout the eruption after vent opening.  470 

Alternatively, an in-vent water-saturated sediment slurry, comprising variable amounts 471 

of external water, lithic material and juvenile recycled tephra (Kokelaar, 1986; White, 1996, 472 

Schipper and White, 2016), would have a density intermediate between pure water and country 473 

rock, and the volatile saturation pressures in quenched glass would therefore correspond to 474 

fragmentation depths intermediate between lithostatic and hydrostatic end-members. The 475 

presence of recycled clasts within coarse ash and lapilli from Hverfjall (Fig. 2d; Liu et al., 476 

2017) supports the magma-slurry hypothesis, as does the broad range of SMG measured in 477 
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hydromagmatic pyroclasts (Figs. 4, 10). The substantial variations in confining pressure 478 

implied by the large range of SMG may record temporal or spatial variations in the water-479 

sediment proportions within the slurry and the thickness of the slurry layer itself, without the 480 

need to invoke fragmentation over a large depth interval. Local pressure fluctuations resulting 481 

from discrete explosions (implied by the repeating sequences of lapilli-ash graded couplets in 482 

proximal deposits; Liu et al., 2017; Graettinger and Valentine, 2017) may also introduce 483 

transient departures from a linear depth-pressure relationship, thus contributing further to the 484 

variability in SMG. During periods of high magma supply, pyroclasts in the centre of the uprush 485 

column may have been thermally insulated and experienced minimal MWI, consistent with 486 

observations of incandescence in the eruption column during continuous uprush phases at 487 

Surtsey (Þórarinsson, 1967) and Capelinhos (Cole et al., 2001). In this case, the depth of 488 

quenching may be significantly shallower than that of fragmentation. Further, as a result of 489 

clast recycling within the vent slurry, sampled clasts may represent time-averaged conditions 490 

over an interval longer than the deposition of an individual bed. Time-averaging in this way 491 

may contribute to the apparent geochemical homogeneity (Houghton and Smith, 1993; 492 

Graettinger et al., 2016; Schipper and White, 2016). 493 

In the context of the regional hydrology, our geochemical data are consistent with 494 

interaction with a groundwater aquifer (Liu et al., 2017), with the development of an in-vent 495 

slurry maintaining and modulating confining pressures after vent opening. The opening phase 496 

of hydromagmatic activity generated a widespread tephra fall deposit prior to the onset of surge 497 

emplacement (Mattsson and Höskuldsson, 2011). Although vertical migration of the locus of 498 

MWI could have contributed to this change in eruption style (Graettinger et al., 2014, 2015; 499 

Valentine et al., 2014), the range of SMG remains relatively constant between hydromagmatic 500 

fall and base surge deposits, suggesting that pyroclasts were quenched under a similar range of 501 

pressure conditions and arguing against significant migration of the fragmentation surface. 502 
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However, we cannot exclude small-scale migration on the scale of metres to tens of metres, as 503 

this would not be resolvable with our volatile data. In-vent recycling of pyroclasts may also 504 

have contributed to the homogenisation of subtle temporal trends. Alternatively, the transition 505 

from fall- to surge- dominated deposition may record a reduction in the volumetric magma 506 

flux, and thus a change in the magma-water mixing ratio and resultant energy transfer 507 

(Mattsson and Höskuldsson, 2011) or to variations in the vent geometry (e.g., cone growth).       508 

Interestingly, the data shown in Figure 4 suggest a subtle increase in SMG during the 509 

transition from ‘wet’ to ‘dry’ surges (inferred from sedimentological properties of the deposits; 510 

Liu et al., 2017). This increase in SMG through time cannot be explained by progressive 511 

degassing of a single magma batch, which would gradually deplete sulfur in the melt. Instead, 512 

this increase may reflect either elevated confining pressure (associated with the establishment 513 

of, or changing conditions within, an in-vent magma-slurry), or small-scale (10s of metres) 514 

migration of the fragmentation level, which has been shown to influence deposition processes 515 

(Grættinger et al. 2015). Explosions beneath the centre of a pre-existing crater that occur deeper 516 

than their optimal scaled depth, form narrow debris jets that mainly collapse back into the crater 517 

(Taddeucci et al. 2013; Grættinger et al. 2014, 2015). The collapse results in the lateral 518 

displacement of gas and particles, generating dilute fine-grained density currents. These dilute 519 

flows produce fine-grained stratified and cross-stratified deposits, which closely resemble the 520 

stratified tuffs resulting from ‘dry’ base surges in natural systems (e.g., Waters & Fisher, 1971; 521 

Chough & Sohn 1990; Valentine et al. 2015). 522 

 The major element glass compositions of the crater samples (H5.11) are 523 

indistinguishable from the surrounding fall and surge deposits (Fig. 3), supporting a genetic 524 

link. Nevertheless, large uncertainties remain regarding timing of edifice growth relative to the 525 

emplacement of these distal deposits. Figure 4 shows that the crater samples are slightly 526 
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elevated in SMG relative to initial fall deposits and are instead more similar to the late-stage 527 

surges (H8.9 C–F).  528 

 529 

5.4 Sulfur degassing in ocean island basalts 530 

Figure 10a synthesises sulfur data in matrix glasses and melt inclusions from a range of basaltic 531 

volcanic systems in Iceland. The compilation includes tephra from hydromagmatic 532 

environments that include subglacial (e.g., Grímsvötn, Katla; Óladóttir et al., 2008; Sigmarsson 533 

et al., 2013; Liu et al., 2015), shallow seawater (e.g., Surtsey; Schipper et al., 2015), and 534 

surface/subsurface groundwater interactions (e.g., Laki; Þórðarson et al., 1996). 535 

Hydromagmatic matrix glasses span a broad range in sulfur content from 1500 to 600 ppm. 536 

Tephra produced during purely magmatic phases, in contrast, consistently contain <600 ppm 537 

residual SMG (Þórðarson et al., 1996; 2003). Co-erupted lavas typically retain SMG <100 ppm, 538 

indicating further degassing during flow emplacement (Þórðarson et al., 1996).  539 

Vapour-saturation in reduced ocean island basalts, particularly with respect to H2O, 540 

occurs late and shallow relative to hydrous arc basalts (Gerlach, 1986; Dixon et al., 1991; 541 

Wallace and Edmonds, 2011; Edmonds and Wallace, 2017), the result is a burst of vesiculation 542 

at depths of only a few hundred metres beneath the ground surface. Significant sulfur loss 543 

through fluid-melt partitioning into a vapour phase is therefore delayed until melts become 544 

water-saturated. Figure 11 shows how vesicularity (considering here only H2O exsolution) 545 

varies as a function of pressure for mafic melts at 1125˚C, for different initial water 546 

concentrations. For an initial H2O concentration of 0.5 wt% (close to the assumed initial 547 

Hverfjall concentration of 0.6 wt%), the vesicularity range of 0% (dense fragments) to ~75% 548 

(highly vesicular grains) measured in hydromagmatic pyroclasts (Liu et al., 2017; blue shaded 549 

region on Fig. 11) can be accounted for by quenching over a pressure range of ~1.5–4 MPa. 550 
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This pressure interval agrees well with the range of independent volatile saturation pressures 551 

(matrix glass) determined here for the same deposit (grey shaded region on Fig. 11).  552 

Bubble nucleation and growth would not only reduce the material strength of the 553 

magma, thereby enabling brittle fragmentation at lower applied stresses (Wagh et al., 1993; 554 

Van Otterloo et al. 2015), but may also determine the grain size distribution of fragmented 555 

pyroclasts (Liu et al., 2015, 2017). Furthermore, if rapid late-stage volatile exsolution was 556 

sufficient to drive magmatic fragmentation, either prior to or synchronous with MWI, then the 557 

resulting increase in magma surface area would likely have enhanced the efficiency of magma-558 

water mixing and heat exchange. An interesting consideration is whether vesiculation is a 559 

necessary criterion for efficient mixing between magma and water, and therefore for sustained 560 

energetic MWI (Houghton et al., 2015).  561 

 562 

5. Summary and conclusions 563 

Dissolved volatile concentrations in magmatic and hydromagmatic tephra erupted 564 

contemporaneously during the Hverfjall Fires provide important constraints on the depth and 565 

timing (relative to the onset of magmatic vesiculation) of magma-water interaction (MWI). The 566 

magma erupted at both Hverfjall and Jarðbaðshólar vents shared the same magmatic history 567 

during dike propagation and decompression to ~1.6–2.6 MPa (average = 2.1 ± 0.3 MPa, which 568 

translates to 74 m or 210 m depth assuming lithostatic or hydrostatic pressure, respectively), at 569 

which point the Hverfjall magma was quenched by interaction with a system of groundwater 570 

aquifers. In contrast, the Jarðbaðshólar magma continued to degas until fragmenting at near-571 

atmospheric pressure followed by late-stage expansion above the vent. This range of 572 

pressures/depths for MWI agrees well with those determined from scaled analogue 573 

experiments, which suggest that, for a realistic range of energies, only subsurface explosions 574 

<200 m depth are likely to breach the surface while those occurring <100 m contribute most to 575 
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proximal−medial tephra ring deposits (Taddeucci et al. 2013; Grættinger et al. 2014, 2015; 576 

Valentine et al. 2014). That these two independent approaches are converging towards a similar 577 

estimate, at least within the bounds of uncertainty, is a very promising result. 578 

Vesicle textures in rapidly quenched hydromagmatic tephra indicate that the magma 579 

had already begun to vesiculate prior to magma-water interaction (i.e. >2–6 MPa), where 580 

degassing models suggest the vapour phase would have been mostly CO2. Sulfur remained 581 

dissolved in the melt (or in sulfide phases) until shallow pressures (~2 MPa) concomitant with 582 

late-stage H2O saturation (and the onset of magmatic fragmentation?). Hydromagmatic matrix 583 

glasses record elevated sulfur contents (550–1450 ppm) that reflect degassing of 17–70% of 584 

the initial pre-eruptive sulfur in the melt. We attribute this heterogeneity in SMG to spatial 585 

variations in syn-eruptive magma-water mixing efficiency (manifest as differences in quench 586 

rate) and/or to local variations in the effective confining pressure. Such a scenario is consistent 587 

with existing models of magma-groundwater interaction in which MWI occurs within an in-588 

vent fluidised slurry comprising a water-saturated mixture of juvenile/recycled pyroclastic and 589 

lithic debris (e.g. Hopi Buttes maar-diatreme, US; White, 1991; Surtsey tuff cone, Iceland; 590 

Kokelaar, 1983, 1986; White, 1996; Schipper and White, 2016). Slurry formation provides a 591 

mechanism through which the elevated confining pressures required by the volatile data could 592 

be maintained and buffered throughout the eruption, whilst enabling vertical mixing and 593 

ejection of fragmented juvenile and lithic material from a range of depths consistent with 594 

emerging models based on experimental and natural explosion data (Graettinger et al., 2014, 595 

2015; Valentine et al., 2014, Graettinger and Valentine, 2017). Furthermore, local variations 596 

in confining pressure implied by the large ranges of SMG might be easily envisioned within a 597 

slurry environment as a result of changes in density (water-sediment proportions), slurry 598 

thickness, or pore pressure. Pressure fluctuations from explosions may also contribute to 599 

variable confining pressure. From a mixing perspective, the higher viscosity of a slurry relative 600 



2
5 

 
 

 

to water may enhance the efficiency of magma-water interaction, as the reduced viscosity 601 

contrast with the magma would facilitate mingling. 602 

Although elevated throughout, the range of sulfur concentrations in hydromagmatic 603 

matrix glass remains relatively constant throughout the eruptive stratigraphy regardless of the 604 

eruptive style (i.e. fall- versus surge-dominated deposition). If volatile saturation pressure is 605 

taken as a proxy for fragmentation depth, these data imply that the water supply was sufficient 606 

to maintain MWI throughout the eruption with no significant vertical migration in the depth of 607 

interaction with time (although small-scale migration on the order of metres or tens of metres 608 

cannot be excluded). Together with existing constraints on the previous extent of proto-Lake 609 

Mývatn (Einarsson, 1982), this stability provides further evidence for magma-groundwater 610 

interaction, rather than an eruption through a surface lake where water availability would have 611 

been finite (Liu et al., 2017). However, we note that pyroclast recycling within a vent slurry 612 

may have contributed to the homogenisation of temporal variability. 613 

To conclude, our results support previous studies (e.g., Davis et al., 2003; Mastin et al., 614 

2004; Schipper et al., 2010a,b; 2011; Hungerford et al., 2014) that show measurements of 615 

dissolved volatiles in matrix glass and melt inclusions provide an effective approach to 616 

determine (1) the environment of MWI (e.g., groundwater versus surface water, vertical 617 

migration of the fragmentation level) and (2) the state of the magma at the time of 618 

fragmentation, both critical variables controlling the resulting eruptive style. Together, sulfur 619 

and H2O contents are sensitive indicators of hydromagmatic processes, particularly for reduced 620 

Ocean Island Basalts, as late-stage volatile saturation and degassing (S, H2O) occurs at 621 

sufficiently low pressures to overlap with typical MWI environments. Although the absolute 622 

constraints on Psat presented here are based on H2O contents, S provides an effective indication 623 

of relative changes that can be easily measured on larger sample sizes (by EPMA) than is 624 

typically achievable for H2O (by FTIR). In response to increasing awareness that 625 
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morphological and textural pyroclast properties traditionally considered ‘diagnostic’ of MWI 626 

are non-unique indicators of fragmentation mechanisms (White and Valentine, 2016; Liu et al., 627 

2017), we emphasise that the dissolved volatile concentrations in matrix glass provide 628 

alternative (or additional) properties by which to distinguish magmatic from hydromagmatic 629 

eruptive deposits. 630 
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Figure Captions 641 

Figure 1: Sample locations and field sampling of the Hverfjall eruptive deposits; (a) Location 642 

of the Krafla Volcanic System (KVS) in the larger tectonic setting of Iceland; (b) Hverfjall tuff 643 

ring viewed from the north; (c) Detailed map of the study area, with annotated locations of 644 

sampling sites from Table 1. Redrawn from Liu et al., (2017); (d) Stratigraphic section at site 645 

H6.3 where hydromagmatic and magmatic deposits are exposed together, also showing 646 

underlying Hekla-3 silicic ash deposit. Tape measure is 70 cm for scale; (e) Characteristic 647 

erosion patterns in hydromagmatic base surge deposits at site H8.9, viewed from the north. 648 

 649 
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Figure 2: Textural properties of erupted pyroclasts; (a) Hydromagmatic fall deposit [3φ; H6.3]; 650 

(b) Plagioclase-Clinopyroxene-Olivine glomerocryst with associated Fe-Cu-Ni sulfide 651 

globules [H2.3]. Olivine has been outlined in red for clarity; (c) Skeletal olivine morphology 652 

[H2.3]; (d) Recycled crystalline lithic (cognate and/or accessory) within juvenile sideromelane 653 

clast [H2.3]. 654 

 655 

Figure 3: Major element matrix glass composition expressed as weight percent anhydrous 656 

oxides, for the Hverfjall Fires hydromagmatic fall (blue), hydromagmatic surge (green) and 657 

magmatic fall (red) deposits. Melt inclusion compositions are represented by orange (olivine-658 

hosted) and black (plagioclase-hosted) crosses; (a) SiO2 vs. K2O; (b) MgO vs. FeOT; (c) MgO 659 

vs. Al2O3; (d) MgO vs. CaO. Data for Hverfjall are presented in Table S1, supplementary 660 

information. Solid lines show reverse fractional crystallisation liquid lines of descent (LLD) 661 

starting from the average hydromagmatic matrix glass compositions, modelled using Petrolog3 662 

(Danyushevsky and Plechov, 2011); see main text for details. Whole rock (WR) data for Krafla 663 

caldera lavas from Nicholson et al., (1991). 664 

 665 

Figure 4: Compilation of dissolved sulfur concentrations in matrix glass (coloured symbols) 666 

and melt inclusions (black crosses). Matrix glasses analyses are coloured according to deposit 667 

type (hydromagmatic fall [blue] hydromagmatic surge [green], magmatic scoria [red]) and clast 668 

morphology (dense fragment [diamond], shard [triangle], or vesicular particle [circle]). All 669 

clasts analysed are >0φ (<1 mm), with the exception of 20 clasts in the sample H2.3 (2–4 mm) 670 

and two lapilli in MQ1 (16–32 mm). Data presented in Table S1, supplementary information.  671 

 672 



2
8 

 
 

 

Figure 5: Co-variation in dissolved sulfur and chlorine concentrations in hydromagmatic fall 673 

(blue filled symbols) and magmatic (red open symbols) matrix glasses, and melt inclusions 674 

(black crosses) from Figure 5. Data presented in Table S1, supplementary information. 675 

 676 

Figure 6: Core-to-rim profiles of matrix glass sulfur concentrations in 16–32 mm lapilli clasts 677 

[MQ1], showing the transition from quenched rim to expanded core. Symbols are coloured 678 

according to their position within the sample: rim (filled circles) or core (crosses). The 679 

backscattered electron SEM image illustrates the locations of analysis points for ‘clast 1’ for 680 

comparison with corresponding changes in vesicle texture. Analysis points are annotated with 681 

their sulfur concentration in ppm. 682 

 683 

Figure 7: Co-variation in sulfur (ppm; measured by electron microprobe) and H2O (wt%; 684 

measured by FTIR spectroscopy) concentrations in matrix glasses from magmatic (red 685 

triangles; HQ1) and hydromagmatic (blue circles; H2.3) pyroclasts from the 0φ (1–2 mm) size 686 

class (Table S2, supplementary information). Open symbols indicate those glasses that 687 

contained measurable CO2 above the detection limit of 4 ppm. The filled square shows the H2O 688 

concentration in equilibrium with 1 atm pressure for Kīlauean ocean island basalts (0.09 ± 689 

0.003 wt%; Wallace and Anderson, 1998; Mangan et al., 1993; Cashman et al., 1994; Mastin 690 

et al., 2004). 691 

 692 

Figure 8: Thermodynamic modelling of C-O-H-S as a function of pressure using SolEx 693 

(Witham et al., 2012). Model runs were initiated using full parameterisation of the average 694 

hydromagmatic glass composition (Table S1), and initial volatile concentrations of 1.2 wt% 695 

CO2, 0.6 wt% H2O, 1500 ppm S, and 160 ppm Cl. Temperature and oxygen fugacity were fixed 696 

at 1150˚C and NNO=0.5, respectively. 697 
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 698 

Figure 9: Volatile saturation pressures of hydromagmatic glasses (from Figure 8) translated to 699 

physical depths, for either lithostatic (open symbols) or hydrostatic (filled symbols) pressure 700 

gradients. The different symbols explore the effect of variable assumed CO2 contents (0, 5, and 701 

20 ppm) below the FTIR detection limit on the calculated pressures/depths.  702 

 703 

Figure 10: Sulfur degassing in Ocean Island Basalts; (a) Compilation of sulfur concentrations 704 

for matrix glass (coloured symbols) and melt inclusions (black open symbols) from Icelandic 705 

glasses as a function of TiO2/FeO (wt%), for a range of different Icelandic basaltic systems, 706 

including Hverfjall (circles; Table S1, this study), Veidivötn (vertical crosses; Þórðarson et al., 707 

2003), Holuhraun (6-point stars; Gauthier et al., 2016), Laki (diamonds; Þórðarson et al., 1996), 708 

Grímsvötn (horizontal crosses; Sigmarsson et al., 2013; Liu et al., 2015), Katla (squares; 709 

Þórðarson et al., 2003; Óladóttir et al., 2008), Fimmsvorðuhals (5-point stars; Þórðarson et al., 710 

2011), and Surtsey (triangles; Schipper et al., 2015). The range of sulfur concentrations within 711 

the deposits of Icelandic tuyas are shown by the vertical arrows, for subaerial lava flows (red 712 

arrow) and subaqueous deposits >400 m water depth (blue arrow; Moore and Calk, 1991). (b) 713 

Sulfur concentration of matrix glass and melt inclusions as a function of FeO wt% for Icelandic 714 

(large symbols) and Hawaiian (small symbols; Kīlauea) glasses, for comparison. Data for 715 

Kīlauea from Mastin et al., (2004), Sides et al., (2014), and Moussallam et al., (2016).  The 716 

colour scheme for symbols is the same as (a). The black line corresponds to the theoretical 717 

sulfur content at sulfide saturation (SCSS) for Fe-S-O-liquid-saturated MORB melts, 718 

illustrating the dependence of sulfur solubility on melt FeO composition (Wallace and 719 

Carmichael, 1992; Mavrogenes and O’Neill, 1999, Wallace and Edmonds, 2011).  720 

 721 
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Figure 11: Vesicularity as a function of pressure for mafic melts at 1125˚C, for different initial 722 

H2O contents (from Pioli et al., 2008), showing the range of vesicularities in hydromagmatic 723 

pyroclasts from Hverfjall (light blue shaded region; Liu et al., 2017) and the range of saturation 724 

pressures calculated in this study from glass volatile concentrations in the same deposits (grey 725 

shaded region). Symbols represent independent empirical measurements of vesicularity as a 726 

function of pressure for other volcanic systems in Iceland where quench pressure is well-727 

constrained. 1Dredge samples of pillow basalt rims from varying water depths off the 728 

Reykjanes Peninsula (grey crosses; Moore and Schilling, 1973); 2Subglacial pillow basalt rims 729 

within Icelandic tuyas emplaced beneath ice of known thicknesses (black triangles; Jones, 730 

1969). 731 
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Tables 742 

 743 

Table 1: Details of the main samples used in this study. a Distance from centre of Jarðbaðshólar 744 

vent if ‘dry’ magmatic or Hverfjall vent if hydromagmatic.  745 

Sample name Origin  Deposit 

Type 

GPS Location 
(minutes/ 

degrees/ 

seconds) 

Distance 

from the 

venta 

(km) 

 

H2.3 Hydromagmatic Fall 65 35 39.6 N 

16 51 38.3 W 

1.5 

H6.3 Hydromagmatic Fall 65 37 57.4 N 

16 50 38.0 W 

3.5 

H9.3 Hydromagmatic Fall 65 38 36.1 N 

16 52 17.6 W 

4.5 

H7.5 Hydromagmatic Fall 65 39 25.6 N 

16 34 02.0 W 

15 

Hcrater E (top) Hydromagmatic Fall/Surge 65 36 30.3 N 

16 52 44.9 W 

0 

C 

A (base) 

H8.9         F (top) Hydromagmatic Surge 65 37 00.9 N 

16 51 27.6 W 

1.5 

E 

D 

C 

B 

A (base) 

MQ1 Magmatic (dry) Fall 65 37 55.2 N 

16 50 59.4 W 

0.4 

M6.3 Magmatic (dry) Fall 65 37 57.4 N 

16 50 38.0 W 

0.5 

MQ3 Magmatic (dry) Fall 65 38 13.8 N 

16 51 11.8 W 

0.2 

 746 

 747 

 748 

 749 

  750 
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“Insights into the dynamics of mafic magmatic-hydromagmatic 

eruptions from volatile degassing behaviour” 

 

Supplementary Figures 

 

Figure S1: Variation in dissolved water concentration in matrix glass as a function of FTIR 

wafer thickness.  Some, but not all, hydromagmatic glasses thicker than 100 μm contain 

detectible (> 4 ppm) CO2. 

 

 

 

Figure S2: Sulfur speciation in hydromagmatic and magmatic matrix glasses, determined by 

the wavelength shift of the S kα peak (Wallace and Carmichael, 1994). The corresponding 

oxygen fugacities, expressed relative to the fayalite-magnetite-quartz (FMQ) buffer, are 

calculated according to the calibrations of Jugo et al., (2005; black curve) and Jugo et al., (2010; 

orange curve); see main text for discussion. Symbols correspond to the dwell times used during 

data acquisition. The Smithsonian basaltic glass standard VG2 (Juan de Fuca Ridge, NMNH 

111240-52) is shown for comparison. Data presented in Table S3, supplementary information. 

 

Figure S3: Dissolved sulfur concentration in matrix glasses as a function of particle size. 

  



 
 

Supplementary Tables 

 

Table S1: Major element glass compositions expressed as anhydrous oxides, with original 

totals, for matrix glass and melt inclusions (MI) from hydromagmatic fall, hydromagmatic 

surge, magmatic fall, and tuff ring crater deposits. All major elements are expressed as weight 

percent, with the exception of S and Cl, which are shown in ppm. Classification is based on 

visual observation from backscattered electron SEM images. Ol. = Olivine MI host; Plag. = 

Plagioclase MI host. Unconsolidated samples are analysed in individual sieved size fractions, 

whilst the consolidated surge deposits are analysed from thin sections comprising multiple 

grain sizes. Sample numbers correspond to those given in Table 1. 

[see attached text file] 

 

Table S2: H2O-CO2 volatile concentrations (from Fourier Transform Infrared Spectroscopy; 

FTIR) and corresponding major element glass compositions expressed as anhydrous oxides 

(from electron microprobe) for quenched matrix glasses. All major elements are expressed as 

weight percent, with the exception of S, Cl and CO2, which are shown in ppm. “b.d” indicates 

below detection (<4 ppm for CO2). Full results from FTIR are given in Table S1, supplementary 

information. 

[see attached Excel file] 

 

Table S3: Sulfur speciation in matrix glasses and corresponding melt oxygen fugacities (fO2), 

expressed relative the the FMQ buffer. 

[see attached Excel file] 

  



 
 

Appendix A: Sulfur speciation and oxygen fugacity (fO2) in quenched matrix glasses 

 

A.1 Method 

The speciation of sulfur in matrix glasses (samples H2.3 and MQ1; see main text for details) was 

determined from the wavelength (λ) of the S kα peak (Carroll and Rutherford, 1988; Wallace 

and Carmichael, 1994; Jugo et al., 2005; Lesne et al., 2011). Measurements of λ(S kα) were 

made using the FEG-EPMA operating under the same conditions as for major element analyses 

(20 kV, 40 nA), but varying the beam diameter from 10 µm (1s dwell time) to 15 µm (100 ms 

dwell time). For comparison, wavescans were acquired by two methods: (a) 16 static 

wavescans at 100 ms dwell time for each step; (b) 6 moving wavescans at 1 s dwell time for 

each step, migrating the beam position by 10 µm every 20 s to minimise changes in S speciation 

due to electron beam exposure (Wallace and Carmichael, 1994; Metrich and Clocchiatti, 1996; 

Wilke et al., 2008; Metrich et al., 2009).  

Wavescan spectra from each method were stacked, and the S kα peak position 

determined by fitting a Gaussian function to the stacked spectra. The S kα peak positions of 

FeS2 (pyrite) and BaSO4 (barite) standards (representing pure sulfide [S2-] and pure sulfate 

[S6+] end-members, respectively) were found to be equivalent for both measurement methods, 

with an instrumental precision (2σ; based on 48 spectra per standard) of +/-0.006 pm (pyrite) 

or +/-0.015 pm (barite).  The S kα peak position of VG2 basaltic glass standard was also 

measured.  

The oxygen fugacity, fO2, of the melt at the point of quenching to glass was calculated 

from S6+/Stotal according to the calibrations of Jugo et al., (2005; from EPMA) and Jugo et al., 

(2010; from X-ray Absorption Near Edge Structure, [XANES] spectroscopy). The assymptotic 

relationship between S6+/Stotal and fO2 at low fO2 imposes a resolution limit of ~FMQ +0, below 

which it is challenging to precisely constrain fO2 by this technique. 



 
 

 

A.2 Results 

Sulfur species in matrix glasses from the Hverfjall Fires tephra are sulfide-dominated (Fig. S2; 

Table S3, supplementary information), with S6+/Stotal ranging from <0.11 (hydromagmatic) and 

0.04 to 0.49 (magmatic). The results are independent of the analytical method used (i.e., a 

moving beam and 1 s dwell time [triangles; Fig. S2] or a static beam and shorter 100 ms dwell 

time [circles; Fig. S2]). Using the calibration of Jugo et al., (2005), average sulfur speciation 

values correspond to oxygen fugacities of FMQ +0.1 ± 0.36 (1σ; hydromagmatic) and FMQ 

+0.5 ± 0.72 (1σ; magmatic). These fO2 ranges increase very slightly to FMQ +0.4 ± 0.17 (1σ; 

hydromagmatic) and FMQ +0.6 ± 0.33 (1σ; magmatic) if the calibration of Jugo et al., (2010, 

based on XANES spectra) is used.  
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