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Abstract

The non-negative matrix factorization (NMF) is a powerful machine learning technique used in mathematics,

computer science, and data science. This technique has applications in a wide range of fields including

recommender systems, image processing, signal processing, machine learning and genetics. Recently, NMF

has gained popularity in the analysis of single-cell gene expression data to identify cell types and gene

expression patterns. In this thesis, we have studied the NMF, its rank estimation, classification, and stability

using both simulated data and real single-cell gene expression data. We have designed two simulated data

sets with desired features and tested two seeding methods, eight NMF algorithms and five rank estimation

criteria. Additionally, a real single-cell gene expression data has been used to further characterize the NMF

algorithms. We have also investigated the stability of NMF, first over the sample size consideration and

then on initialization. The detailed conditions that have been revealed by this thesis may generate practical

impact in directing the appropriate use of NMF in analyzing single-cell gene expression data.
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Chapter 1

Introduction

Non-negative matrix factorization (NMF) is an important technique in many applications, especially the

analysis of modern single-cell RNA-seq data. In this work, we studied the properties of multiple variants

of NMF, focusing on their performance and stability. We have tackled some of the issues and challenges

about NMF which include rank estimation, classification, initialization, and stability. We have done a large

amount of simulation study as well as real data investigation for comparing the performance of different

factorization algorithms. During the course of the analysis, some techniques and ideas were developed. The

thorough analyses provide useful information of advantages and disadvantages of different algorithms and

some guidance on how to use them in practice.

1.1 Matrix Factorization

Matrix factorization is a powerful technique used in mathematics, computer science, and data science to

represent a matrix as the product of two matrices. This technique has applications in a wide range of fields

including recommender systems, image processing, signal processing, machine learning and recently in bio-

logical data including single-cell data analysis.

By breaking down a large matrix into smaller matrices, matrix factorization can help extract useful in-

formation including hidden dimension and patterns from the data. It is especially useful in the situations

where the data matrix is sparse or has missing values. Matrix factorization has become increasingly popular

in recent years, in part due to the rise of big data and the need for efficient methods to analyze and process

it. In this context, matrix factorization is a powerful tool for reducing the dimensionality of data, revealing

hidden structures, and extract insights.
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There are many different matrix factorization algorithms have been developed over the years. They are

mainly fall into two categories: One is traditional statistics based and the other is modern machine learning

based.

The statistics based methods mainly include Factor Analysis (FA), Principal Component Analysis (PCA)

and some of the variations.

Factor analysis is a statistical method to identify the underlying factors or latent variables that explain

the correlations among a set of observed variables. These factors are hypothetical constructs that cannot

be directly observed but can be inferred from the observed variables. Factor analysis seeks to reduce the

complexity of a dataset by grouping variables that share common patterns of variance. It does this by iden-

tifying the minimum number of factors needed to explain the maximum amount of variability in the dataset.

Similarly, Principal Component Analysis (PCA) is a statistical method to reduce the dimensionality of

a dataset while retaining as much of the original variation as possible. PCA achieves this by identifying a

smaller set of linear combinations of variables (covariates), called principal components, which capture the

most significant patterns and relationships in the data. These principal components are orthogonal and are

sorted by the amount of variance they explain. By analysing these components, we can gain the insights into

underlying structure of the data and identify the most important components that influence the variability

in the dataset.

Mathematically, both FA and PCA are working with the variance-covariance matrix of the original dataset.

Given m × n matrix Xm×n where m is the number of covariates and n is the number of samples. We find

the variance-covariance matrix Vm×m and its eigenvalues. It is known that the variance-covariance matrix

Vm×m is positive semi-definite. Furthermore as Vm×m is a real symmetric matrix, hence all its eigenvalues

are real and non-negative, λ1 ≥ λ1 ≥ ... ≥ λm.

We choose the first k (k ≤ m) eigenvalues and their corresponding eigenvectors to form a loading ma-

trix Lm×k such that Vm×m ≈ Lm×k × LT
m×k (matrix factorization) [16]. We call these methods statistics

based as the factorization is performed on the variance-covariance matrix instead of the original data matrix.

Sometimes, statistical assumptions may be required for the analysis.
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On the other hand, the machine learning based methods work directly with the original dataset and no

statistical assumptions are needed. The machine learning based methods include Non-negative Matrix Fac-

torization (NMF), Dictionary Learning (DL), and Latent Dirichlet Allocation (LDA) etc. In this category,

NMF is a very important method as in many applications the datasets involved are non-negative in nature.

1.2 Non-negative Matrix Factorization

NMF is a machine learning technique that is used to factorize a non-negative matrix into two low-rank

matrices. Unlike some other matrix factorization methods, NMF restricts the factor matrices to be non-

negative, which makes the resulting factors easier to interpret in terms of the original data. The main idea

behind the NMF is to represent a high-dimensional dataset as a linear combination of a small number of base

vectors, with non-negative coefficients. It can be used to identify pattens and relationships in data that are

not directly observed. NMF is a type of matrix factorization that seeks to factorize a non-negative matrix

into two non-negative matrices, where the product of the two matrices is the approximation of the original

matrix. The resulting matrices represent the underlying structure of the data and can be used to identify

latent variables that explain the variation in the data. Here is a brief mathematical setting of NMF: Given

a non-negative matrix Xm×n and a natural number r (the rank), find two non-negative matrices, Wm×r

and Hr×n such that Xm×n ≈ Wm×r × Hr×n. Or more formally, for a given loss function l(·) such that

l(Xm×n −Wm×r ×Hr×n) is minimized. [18] [19].

Let us look at the following motivation example: Assume that we have m words and n articles. Let Xm×n

be a data matrix and the entry Xij is the frequency of the i-th word in the j-th article. Hence, Xm×n

is a non-negative matrix. Among all the n articles there might be r different hidden topics (say science,

music, sports, etc.). We will have to estimate the r value and use NMF to find Wm×r and Hr×n such that

Xm×n ≈ Wm×r ×Hr×n. Here both Wm×r and Hr×n are non-negative matrices. The Wm×r represents the

relationship between words and topics and Hr×n represents the relationship between the topics and articles.

This factorization has two utilities: (1) It reveals the number of topics (the r value), the topic of each docu-

ment, and the membership of words belonging to the topics. (2) The r value is typically much smaller than

m and n values. Hence it will lead to substantial dimension reduction.

One important application of NMF is the recommender system. A recommender system is a type of infor-

mation filtering system that provides personalized recommendations to users based on their past behavior,

preferences, and interests. It is commonly used in online platforms such as e-commerce websites, social me-

3



dia, music, and video streaming services. Recommender systems use different algorithms and techniques to

analyze user data, such as browsing and purchase history, search queries, and ratings, to create user profiles

and generate recommendations. Let Rm×n be a non-negative user verse item rating matrix where Rij is the

rating of ith user to jth item. An important step is to find a suitable value of r and decompose the rating

matrix Rm×ninto two non-negative matrices Pm×r and Qn×r such that Rm×n ≈ Pm×rQ
T
n×r. Here Pm×r

is the users representation matrix (users verse latent factors) and Qn×r is the items representation matrix

(items verse latent factors). NMF is a commonly used method for this purpose [6].

Recently, NMF has gained popularity in the analysis of single-cell gene expression data. In the context

of single-cell gene expression data, NMF is used to identify cell types and gene expression pattens. The

gene expression data is represented as a matrix, where each row corresponds to a gene and each column

corresponds to a single cell (or its transpose, where each row corresponds to a single cell and each column

corresponds to a gene). NMF can be applied to this matrix to identify a smaller number (the rank) of gene

sets, called metagenes, that capture the variation in the data. These metagenes represent group of genes that

are co-expressed and may have functional relationship. Similar, based on the transposed matrix (cell verse

gene), NMF can be used to identity metacells. One advantage of using NMF in single-cell gene expression

analysis is that it can handle the sparsity and noise in the data. NMF can identify pattens in the data even

when some genes are not expressed in certain cells or when there is variability in the expression levels due

to experimental noise (robust).

Although NMF has shown promise in the analysis of single-cell gene expression data, there are challenges

associated with its application to this type of data. One challenge is to choose appropriate rank value r

(the number of metagenes or the number of metacells), as smaller r value may not capture most variation

in the data, while too large r value may result in overfitting and reduce interpretability. In addition, the

choice of the initialization values and optimization algorithm can affect the quality of the factorization and

the resulting metagenes or metacells (non-robust).

Another challenge is the interpretation of the resulting metagenes. While NMF can identify patterns in

the data and group co-expressed genes, it may be difficult to determine the biological significance of these

gene sets without additional experimental validation. Additionally, the interpretation of the resulting cell

types may be complex, as there can be substantial heterogeneity within a given cell population.

4



1.3 The Stability of Non-negative Matrix Factorization

Other than the challenges we mentioned in Section 1.2, the stability of non-negative matrix factorization has

drowned large attention from the researchers in this area. One of the concerns is the impact of the sample

size. This is one of the issues we have discussed in this thesis.

A more common concern of NMF stability is the impact of initialization. Although the NMF algorithms

guarantee the convergence of the iterations, however, they may convergence to some local minimums rather

than the global minimum. Depend on the choice of the initial W and H values, the NMF procedure may

convergence to different minimums (non-robust). This pitfall is due to the non-convexity of the NMF loss

functions [8] [12].

1.4 Organization

This thesis is organized in the following way:

In Chapter 2, we provide some basics about NMF, some preliminaries needed for this thesis. We have pro-

posed two new random seeding methods and also some new ideas about rank estimation for NMF.

In Chapter 3, we have designed two artificial data sets that imitate the real single-cell gene expression

data and with some known (desired) features. An extensive amount of simulation study is done for the

comparison over the initializations and over the different algorithms for rank estimation, classification, and

accuracy of the matrix approximation through its Euclidean distance.

In Chapter 4, we have carried out all the simulation study we have designed in Chapter 3 to a real single-cell

gene expression data. We have also briefly looked at the confusion matrices of single-cell gene expression data.

In Chapter 5, we first have studied the stability of NMF over the sample size on two of our simulated

data sets and then on the single-cell gene expression data. We have also compared the performance of our

proposed random seedings with the package build in random seeding. Then we have had a discussion on the

initialization and stability of NMF.

Chapter 6 is a brief summary of the whole thesis, and some further studies could be done in the area

that related to this thesis.
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Chapter 2

Preliminaries and New Ideas

In this chapter, we provide some basic knowledge about NMF, some preliminaries needed for this thesis, and

also some new ideas about rank estimation and initialization for NMF.

2.1 NMF Algorithm and Initialization

In this section, we give technical details of NMF, a brief description of eight NMF algorithms under com-

parison, and two default seeding strategies (as built-in functions in the NMF package). We also introduce

two of our own random seeding approaches.

2.1.1 NMF Algorithms

In Chapter 1, we have mentioned a few examples that involve non-negative matrix factorization. That is,

for a given non-negative matrix Xm×n and a natural number r (the rank), we have to find two non-negative

matrices, Wm×r and Hr×n such that l(Xm×n −Wm×r ×Hr×n) is minimized. The pioneer work in this area

was done by Lee and Seung [18],[19]. In these two papers, they considered the following two loss functions.

One loss function is based on the squared Euclidian distance and the other is based on the divergence be-

tween two matrices. Here are the definitions:

Definition 1: Given two non-negative matrices Am×n and Bm×n. Then

ED(A,B) =

√√√√ m∑
i=1

n∑
j=1

(Aij −Bij)2

6



is the Euclidean distance between Am×n and Bm×n.

Definition 2: Given two non-negative matrices Am×n and Bm×n. Then

D(A||B) =
∑

(Aij log
Aij

Bij
−Aij +Bij)

is the Kullback-Leibler divergence of A from B.

Lee and Seung [18],[19] considered two formulations of NMF as the following two optimization problems:

Problem 1: For given matrix Xm×n and a natural number r,

minimize l1(Xm×n −Wm×r ×Hr×n) = ED(Xm×n −Wm×r ×Hr×n)
2

with respect to Wm×r and Hr×n , subject to the constraints Wm×r, Hr×n ≥ 0.

Problem 2: For given matrix Xm×n and a natural number r,

minimize l2(Xm×n −Wm×r ×Hr×n) = D(Xm×n||Wm×r ×Hr×n)

with respect to Wm×r and Hr×n , subject to the constraints Wm×r, Hr×n ≥ 0.

To solve these two optimization problems, they proposed two multiplicative update rules and proved the

following two convergence theorems.

Theorem 1:

The squared Euclidean distance ED(Xm×n −Wm×r ×Hr×n)
2 is nonincreasing under the update rules

Hkj := Hkj
(WTX)kj

(WTWH)kj
, Wik := Wik

(XHT )ik
(WHHT )ik

(1)

where i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , r.

The squared Euclidean distance is invariant under these updates if and only if Wm×r and Hr×n are at a

7



stationary point of the distance.

We include this result here as we are using this update rules for some of our simulation studies.

For coding, we will use

Hkj := Hkj
(WTX)kj

(WTWH)kj + ϵ
, Wik := Wik

(XHT )ik
(WHHT )ik + ϵ

(2)

where ϵ = 10−9 instead of (1) to avoid division by zero.

Theorem 2:

The divergence D(Xm×n||Wm×r ×Hr×n) is nonincreasing under the update rules

Hkj := Hkj

∑
i WikXij/(WH)ij∑

s Wsk
, Wik := Wik

∑
i HkjXij/(WH)ij∑

t Hkt
(3)

where i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , r; s = 1, . . . ,m; t = 1, . . . , n.

The divergence is invariant under these updates if and only if Wm×r and Hr×n are at a stationary point of

the divergence.

After Lee and Seung [19], there are many other non-negative matrix factorization algorithms have been

developed. Some of methods improved the convergence rate, some considered difference optimization crite-

ria while the others tackled stability issues. Some of the software packages have been developed recently as

well.

For our simulation study and application, we are using a NMF package by Gaujoux [10]. We are using

eight build-in NMF algorithms named Lee, Brunet, Frobenius, KL, nsNMF, Offset, snmf/r, and snmf/l. The

following are the brief description of these eight algorithms.

Lee: Standard NMF. Based on Euclidean distance, it uses simple multiplicative updates [19].

Brunet: Standard NMF. Based on Kullback-Leibler divergence, it uses simple multiplicative updates from

[19] , enhanced to avoid numerical underflow [4].

8



Frobenius: NMF based on the Frobenius norm. It penalizes large errors in individual matrix elements,

which aligns with the goal of finding a good overall approximation.

KL: The KL divergence is used as a cost or objective function to quantify the dissimilarity between the

original matrix and its NMF approximation.

nsNMF: Non-smooth NMF. Uses a modified version of Lee and Seung’s multiplicative updates for Kullback-

Leibler divergence to fit a extension of the standard NMF model. It is meant to give sparser results [23].

Offset: Uses a modified version of Lee and Seung’s multiplicative updates for Euclidean distance, to fit

a NMF model that includes an intercept [1].

snmf/r, snmf/l : Alternating Least Square (ALS) approach. It is meant to be very fast compared to

other approaches [17].

2.1.2 Initialization of NMF

The NMF algorithms need to be initialized with a seed (i.e. a value for W0 and/or H0), from which to start

the iteration process. Because there is no global minimization algorithm due to the non-convexity of the

loss function, and due to the problem’s high dimensionality, the choice of the initialization is in fact very

important to ensure meaningful results.

There are many different ways to choose the initial W0 and H0 matrices. One of the popular categories

is deterministic seedings. There is a NMF package build-in seeding, called ICA seeding which uses the result

of an Independent Component Analysis (ICA) [22].

Another popular category is random seedings. Here are two common approaches of the random seeding:

1. For a given matrix Xm×n and r value, randomly choose r columns from Xm×n to form W0 and ran-

domly choose r rows from Xm×n to form H0.

2. For a given matrix Xm×n and r value, randomly choose m × r numbers from the range of all entries of
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matrix Xm×n to form W0 and randomly choose r×n numbers from the range of all entries of matrix Xm×n

to form H0.

The advantage of random seedings is cost nearly nothing (running time) to construct the W0 and H0

matrices. One of the pitfalls is that there is little relevance to the matrix Xm×n when we form the initial

W and H matrices. Hence, we are going to introduce two different random seedings with more merits and

more relevance to the matrix Xm×n. The following are the necessary preparations needed to introduce our

two new random seedings.

Claim 1: Let Xm×n be a non-negative matrix. For r < min{m,n} , let Wm×r and Hr×n be two con-

stant matrices such that Wik = Hkj = c, c > 0; i = 1, ...,m; j = 1, ..., n; k = 1, ..., r. Then the ED(X,W ×H)

is a function of c which is minimized when

c =

√∑m
i=1

∑n
j=1 Xij

mnr
.

Proof. It is clear that (W ×H)m×n is also a constant matrix with (W ×H)ij = rc2. Hence

ED(X,W ×H) =

√√√√ m∑
i=1

n∑
j=1

(Xij − rc2)2

Let SED(X,W ×H) be the squared Euclidean distance. Then

SED(X,W ×H) =

m∑
i=1

n∑
j=1

(Xij − rc2)2

Take derivative with respect to c, we have

dSED(X,W ×H)

dc
=

m∑
i=1

n∑
j=1

2(Xij − rc2)(−2rc) := 0

This implies that
m∑
i=1

n∑
j=1

(Xij − rc2) = 0,

and
m∑
i=1

n∑
j=1

Xij −mnrc2 = 0.

10



Hence, we have

c =

√∑m
i=1

∑n
j=1 Xij

mnr
.

The same c will minimize the ED(X,W ×H) as well.

Definition 3. Let Mm×n be a non-negative matrix. Then

||M ||F =

√√√√ m∑
i=1

n∑
j=1

M2
ij

is the Frobenius norm of matrix M .

Claim 2: Let Xm×n be a non-negative matrix. For r < min{m,n} , let Wm×r and Hr×n be two constant

matrices such that Wik = Hkj = c, c > 0; i = 1, ...,m; j = 1, ..., n; k = 1, ..., r. Then ||X||F = ||W × H||F

when

c =

√
||X||F
r
√
mn

=

√√√√√∑m
i=1

∑n
j=1 X

2
ij

r
√
mn

.

Proof. It is clear that (W ×H)m×n is also a constant matrix with (W ×H)ij = rc2. Hence

||W ×H||F =

√√√√ m∑
i=1

n∑
j=1

(rc2)2 =
√
mnr2c4 = r

√
mnc2.

Let ||X||F = ||W ×H||F . we have

||X||F = r
√
mnc2.

Solve for c, we find

c =

√
||X||F
r
√
mn

=

√√√√√∑m
i=1

∑n
j=1 X

2
ij

r
√
mn

.

One of the idea of initializations is to choose W0 and H0 matrices so that X and W0×H0 are relatively close

to each other. By Claim 1, we know that ED(X,W ×H) is minimized if we choose the c value in Claim 1 to

form constant matrices W and H among all the other constant matrices W and H. However, if the initial

W and H matrices are constant matrices, some of the matrix factorization algorithms may not run. Hence,

we are going to introduce a random seeding based on the c value in Claim 1.
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Random Seeding 1 (RS1)

For a given matrix Xm×n and r value, let

c1 =

√∑m
i=1

∑n
j=1 Xij

mnr

and δ1 = min{c1, d1} where d1 is some chosen positive number. We then construct Wm×r by Wik ∼

Uniform(c1 − δ1, c1 + δ1) (to ensure non-negativity) i = 1, ...m, k = 1, ...r and construct Hr×n by Hkj ∼

Uniform(c1 − δ1, c1 + δ1) k = 1, ...r, j = 1, ..., n.

We could also have a random seeding based on the c value in Claim 2.

Random Seeding 2 (RS2)

For a given matrix Xm×n and r value, let

c2 =

√
||X||F
r
√
mn

=

√√√√√∑m
i=1

∑n
j=1 X

2
ij

r
√
mn

and δ2 = min{c2, d2} where d2 is some chosen positive number. We then construct Wm×r by Wik ∼

Uniform(c2 − δ2, c2 + δ2) i = 1, ...m, k = 1, ...r and construct Hr×n by Hkj ∼ Uniform(c2 − δ2, c2 + δ2)

k = 1, ...r, j = 1, ..., n.

2.2 Classification and Rank Estimation

In this section, we will first discuss the classification and confusion matrix and then the criteria of rank

estimation.

2.2.1 Classification and Confusion Matrix

The gene expression data is represented as a matrix, where each row corresponds to a gene and each column

corresponds to a single cell (gene-centered) or its transpose, where each row corresponds to a single cell and

each column corresponds to a gene (cell-centered). In our application, the single-cell data is cell-centered,

that is the matrix Xmn is a cell verse gene matrix.

Assuming that W and H are available, each column xi of X can be approximated as xi ≈ W × hi, thus W

12



is referred to as the basis matrix and H as the coefficient matrix.

For each given r, we apply NMF to the matrix X. The basis matrix W returned by NMF has size m × r,

while m denotes the number of cells and r is the rank. Then we normalize the basis matrix to make each

row sum to unity and obtain W̄ . For classifying of the single cells, we use the largest metacell contribution

in W̄ . In this case, all the cells will be classified.

The confusion matrix is constructed by intersecting the metacell classification obtained via NMF against the

known biological classification (e.g., the cell types). Hence, a confusion matrix M of dimension k× r means

that there are k biological subgroups (cell types) and r metacells (hidden factors). The confusion matrix

contains useful information for further analysis and biological interpretation.

2.2.2 Criteria for Rank Estimation

One of the important and challenge issues in NMF is the rank estimation. There are different ways of

estimating r value. For instance, approaches based on cophenetic correlation or residual sum of squares

have been proposed to estimate the proper rank value in NMF decomposition [4] [15]. Shao and Hofer [24]

found that these approaches successfully uncovered the correct rank for some data sets but failed to find the

appropriate rank value for noisy, high-dimensional RNAseq data. Hence, they suggested using cell sparseness

and information gain to estimate the rank r value.

In this thesis, we will consider five different criteria and compare their performances in rank estimation.

Other than cell sparseness and information gain, we will consider three different criteria for rank estimation.

We are now describing five criteria in details.

1. Criterion Based on Cell Sparseness

For each given r, we calculate the i-th cell sparseness for each cell, i, as

Si =

√√√√ r∑
j=1

(W̄ij)2

and normalized i-th cell sparseness as

NSi = (Si − a)/(1− a), where a =
1√
r
.
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Hence we have,

0 ≤ NSi ≤ 1.

A higher cell sparseness indicates a lower ambiguity in classification results. Thus, a significant drop of cell

sparseness would suggest at a certain rank the cell population should not be further divided.

2. Criterion Based on Information Gain

First, we define the entropy of each cell i as

Ei = −
r∑

j=1

W̄ij log2 W̄ij

In a completely non-informative classification, cell i would have the same contribution 1/r in row i of W̄ .

Thus the entropy is

−
r∑

j=1

1

r
log2

1

r
= −

r∑
j=1

1

r
log2r

−1 =

r∑
j=1

1

r
log2r = log2r.

Hence, we define the information gain of cell i, as

IGi = log2r −
r∑

j=1

W̄ij log2 W̄ij .

and the total information gain as

TIG =

m∑
i=1

(log2r −
r∑

j=1

W̄ij log2W̄ij) = mlog2r −
m∑
i=1

r∑
j=1

W̄ij log2 W̄ij

and the normalized total information gain as
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NTIG =
TIG

mlog2r
= 1− 1

mlog2r

m∑
i=1

r∑
j=1

W̄ij log2W̄ij , 0 ≤ NTIG ≤ 1.

The normalized total information gain indicates how well NMF performs in unambiguously classifying cells.

We are interested in a clear drop of information gain and use that as an indication to estimate the rank value.

3. Criterion Based on Euclidean Distance

The Euclidean distance between Xm×n and Wm×r × Hr×n measures the accuracy of the approximation

of the matrix factorization. Mathematically we know that the Euclidean distance of the approximation is

decreasing when r is increasing. See Claim 3 below. Hence, when there is no clear decline in Euclidean

distance provides an indication of proper rank r value. That is, further increasing r value will not improve

too much the accuracy of the approximation.

Claim 3: Given Xm×n ≥ 0 and 1 ≤ r ≤ n–1. Let Wm×r ≥ 0 and Hr×n ≥ 0 ; Wm×(r+1) ≥ 0 and H(r+1)×n ≥

0 be any non-negative matrices with specified dimensions. Then, we have

minWm×(r+1),H(r+1)×n
{ED(Xm×n−Wm×(r+1)×H(r+1)×n)} ≤ minWm×r,Hr×n

{ED(Xm×n−Wm×r×Hr×n)}

Proof. For any Wm×r ≥ 0, let W ∗
m×(r+1) ≥ 0 be the matrix formed by Wm×r add an additional (r + 1)th

column with all the components of zero. Similarly, for any Hr×n ≥ 0, let H∗
(r+1)×n ≥ 0 be the matrix formed

by Hr×n add an additional (r + 1)th row with all the components of zero. Then, we have,

{Wm×(r+1) ×H(r+1)×n|Wm×(r+1) ≥ 0 and H(r+1)×n ≥ 0}

⊇ {W ∗
m×(r+1) ×H∗

(r+1)×n|W
∗
m×(r+1) ≥ 0 and H∗

(r+1)×n ≥ 0}

= {Wm×r ×Hr×n|Wm×r ≥ 0 and Hr×n ≥ 0}

Therefore, we have

minWm×(r+1),H(r+1)×n
{ED(Xm×n − (Wm×(r+1) ×H(r+1)×n))}

≤ minW∗
m×(r+1)

,H∗
(r+1)×n

{ED(Xm×n − (W ∗
m×(r+1) ×H∗

(r+1)×n))}

15



= minWm×r,Hr×n{ED(Xm×n − (Wm×r ×Hr×n))}.

4. Criterion Based on the Counts of Classified Cells

Sometimes, we only want to classify the cells when the largest metacell contribution in W̄ is above some

prespecified (cut-off) value α, say, α = 0.5 (0.6, 0.7, 0.8, or 0.9). Now for a given α, we find the counts of

classified cells over a range of different r values. We suggest using the r value with the highest percentage

(or counts) of classified cells as the proper (estimated) rank.

5. Criterion Based on the Degree of Confusion of Confusion Matrix

We are now going to introduce a numerical quantity to measure the degree of confusion for any confusion

matrix. Consider a confusion matrix M with dimension k × r. We normalize the confusion matrix to make

each row sum to unity and obtain M̄ .

For each row i of M̄ , we define the row i sparseness as

√√√√ r∑
j=1

(M̄ij)2

This quantity is bounded between 1√
r
(when all the entries of row i are equal to 1

r ) and 1 (when there is

only one non-zero entry with value 1 in row i). That is

1√
r
≤

√√√√ r∑
j=1

(M̄ij)2 ≤ 1

Hence we have,

0 ≤

√√√√ r∑
j=1

(M̄ij)2 −
1√
r
≤ 1− 1√

r

and

0 ≤

√∑r
j=1(M̄ij)2 − 1√

r

1− 1√
r

≤ 1.

We define the following quantity as the degree of confusion for row i,

DCi = 1−

√∑r
j=1(M̄ij)2 − 1√

r

1− 1√
r

.

Note that 0 ≤ DCi ≤ 1 as well.
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Let

RTi - be the number of total counts in row i;

GT — be the grand total counts of matrix M (the summation of all the entries of M).

We define the degree of confusion of matrix M , DC as the weighted average of DCi,

DC =

k∑
i=1

RTi

GT
DCi =

1

GT

k∑
i=1

RTi ×DCi.

It is clear that 0 ≤ DC ≤ 1.

With this measure (DC), for the confusion matrix M with one non-zero entry in every row will have

DC = 0. With all the entries in a row having the same value for all the rows will have DC = 1. We now

can use DC to estimate the r value by finding the r with the smallest DC value (or for the r value before a

big increasing in DC value take place) as the proper rank value.

We are going to run NMF by using eight algorithms, two seeding methods, and five rank estimation criteria

to our two simulated data sets and a real single-cell gene expression data set. The results, comparisons, and

conclusions will be in Chapter 3 and Chapter 4.
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Chapter 3

Assessment on Simulated Data

As we mentioned before, one of the challenges for NMF is the rank estimation. The estimated rank r value

may depend on the seedings and also depend on the factorization algorithms. With the configuration of

single-cell data in mind, we have designed and generated two simulated data here for our investigation of

NMF and its stability. We use these two data sets to compare the performances among different seedings

and factorization algorithms. The performance criteria include rank estimation, classification, and accuracy

of the matrix approximation. We refer Simulation I as the simulation study based on our First Simulated

Data (FSD) and Simulation II as the simulation study based on our Second Simulated Data (SSD).

We applied the rank estimation and classification methods in Chapter 2 to our two simulated data. The

results and conclusions are summarized in Section 3.1.2 and Section 3.2.2.

3.1 Simulation I

3.1.1 The Design of the First Simulated Data (FSD)

Our first simulated data, stored in a matrix Xm×n has size m = 400 and n = 5000. We consider each row

as “individual cell” and each column as “gene expression”. We further consider the first 50 rows, row 1 –

row 50, as group 1 (cell type 1); row 51 – row 100 as group 2 (cell type 2); row 101 – row 150 as group 3

(cell type 3); row 151 – row 200 as group 4 (cell type 4); row 201 – row 250 as group 5 (cell type 5), row 251

– row 300 as group 6 (cell type 6); row 301 – row 350 as group 7 (cell type 7), row 351 – row 400 as group 8

(cell type 8). The matrix Xm×n is designed with the following features:
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1. All the rows in the same group are highly correlated.

2. The rows from different groups are not correlated.

With the above features, we should expect the estimated rank value r = 8 when we run the matrix fac-

torization procedures. Hence, our simulation study could compare and identify which algorithms, seeding

methods, and estimation criteria are better than the others.

The way of design a Xm×n is not unique. The following is the way of our design:

The Design of Group 1:

Step 1

Row 1 has 45% (2250) components with values 0 and 55% (2750) components with values randomly se-

lected between 1 and 10 with different weights (see the table below for the weights). Shuffle the components

in random order.

Counts 1 2 3 4 5 6 7 8 9 10

Weights % 55 20 10 5 4 2 1.6 1.2 0.8 0.4

In the above table, the weights of different counts are the imitation of a real single-cell gene expression data.

Also dimension of our simulated data are compatible with real single-cell gene expression data. Along with

the amount of zero entries in the matrix, our simulated data is sparse, non-negative and with high dimension

which are the common natures of real single-cell gene expression data.

Step 2

Let Row 1 = Row 2 = ... = Row 50

(Duplicate row 2, row 3, ..., row 50. At this moment, row 1, row 2, ..., row 50 are all the same).

Step 3

Change all the rows (row 1, row 2, ..., row 50):

For each row i, (i = 1, ..., 50), randomly choose 10% (500) numbers between 0 and 9 (uniformly) and use

these values to replace 10% (500) randomly chosen components in row i. (Now, all the 50 rows in group 1

are similar but different from each other).
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The design of the other Seven Groups:

Do the same thing for Group 2, Group 3, ..., Group 8 as we did for Group 1 except the following changes:

Group 2

Each row in Group 2, has 50% (2500) components with values 0 and 50% (2500) components with values

randomly selected between 1 and 10 with different weights (use the same table for the weights).

Group 3

Each row in Group 3, has 55% (2750) components with values 0 and 45%(2250) components with values

randomly selected between 1 and 10 with different weights (use the same table for the weights).

Group 4

Each row in Group 4, has 60% (3000) components with values 0 and 40% (2000) components with values

randomly selected between 1 and 10 with different weights (use the same table for the weights).

Group 5

Each row in Group 5, has 65% (3250) components with values 0 and 35% (1750) components with values

randomly selected between 1 and 10 with different weights (use the same table for the weights).

Group 6

Each row in Group 6, has 70% (3500) components with values 0 and 30% (1500) components with values

randomly selected between 1 and 10 with different weights (use the same table for the weights).

Group 7

Each row in Group 7, has 75% (3750) components with values 0 and 25% (1250) components with values

randomly selected between 1 and 10 with different weights (use the same table for the weights).

Group 8

Each row in Group 8, has 80% (4000) components with values 0 and 20% (1000) components with values

randomly selected between 1 and 10 with different weights (use the same table for the weights).
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Note that the change of the percentage of zero counts in each group is to make some difference for each

group. Which is arbitrarily and not unique.

The matrix Xm×n is in Supplementary 1 and its covariance matrix is in Supplementary 2.

When we look at the covariance matrix of Xm×n, we find that our designed data really achieves our purpose.

That is: (1) all the rows in the same group are highly correlated; (2) the rows from different groups are not

correlated.

3.1.2 The Results and Conclusions of Simulation I

We are using a NMF package, Algorithms and Framework for Non-negative Matrix Factorization, to carry

out our simulation study. We choose two seeding methods (a fixed random seeding and ICA seeding) and

eight different factorization algorithms to run the simulations. We use a fixed random seeding for the sake of

reproducibility and comparison purpose. The eight factorization algorithm are: Lee, Brunet, nsNMF, KL,

Frobenius, Offset, Snmf/r, and Snmf/l. For detailed description of these algorithms, see Section 2.1.1 and [10].

As we know the way how the first simulated data is designed, we should expect the rank value r is 8. To save

space, we only present the tables for ICA seeding and leave the tables for random seeding in Supplementary 5.

In Shao, C. and Hofer, T. [24], they used the cell-sparseness and information gain to estimate the rank

r values for their data sets and found quite successful. We have also used cell-sparseness and information

gain to our first simulated data for rank r value between 4 and 10. The results are presented in the following

Table 3.1 and Table 3.2.
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Table 3.1: Mean Normalized Spareness and (SD) for Different Algorithms and Ranks for FSD

Method

Rank
4 5 6 7 8 9 10

Lee 0.54 (0.46) 0.65 (0.44) 0.75 (0.39) 0.85 (0.29) 0.94 (0.02) 0.91 (0.07) 0.77 (0.14)
Brunet 0.90 (0.08) 0.89 (0.10) 0.92 (0.09) 0.95 (0.05) 0.96 (0.04) 0.95 (0.06) 0.87 (0.10)
nsNMF 0.94 (0.08) 0.93 (0.10) 0.97 (0.06) 0.96 (0.09) 0.99 (0.03) 0.90 (0.16) 0.84 (0.16)
KL 0.88 (0.10) 0.87 (0.13) 0.93 (0.05) 0.94 (0.06) 0.96 (0.04) 0.89 (0.12) 0.85 (0.13)
Frobenius 0.54 (0.46) 0.65 (0.44) 0.75 (0.39) 0.85 (0.29) 0.94 (0.02) 0.85 (0.13) 0.83 (0.11)
Offset 0.79 (0.27) 0.82 (0.25) 0.83 (0.26) 0.89 (0.16) 0.94 (0.03) 0.89 (0.07) 0.82 (0.15)
Snmf/r 0.55 (0.45) 0.65 (0.43) 0.74 (0.38) 0.82 (0.28) 0.90 (0.02) 0.86 (0.05) 0.83 (0.07)
Snmf/l 0.55 (0.45) 0.65 (0.43) 0.75 (0.39) 0.85 (0.29) 0.94 (0.02) 0.92 (0.04) 0.91 (0.04)

Table 3.2: Information Gain for Different Algorithms and Ranks for FSD

Method

Rank
4 5 6 7 8 9 10

Lee 0.891 0.903 0.920 0.941 0.963 0.952 0.911
Brunet 0.964 0.958 0.965 0.973 0.979 0.977 0.951
nsNMF 0.980 0.976 0.989 0.986 0.995 0.971 0.952
KL 0.958 0.952 0.970 0.971 0.979 0.958 0.947
Frobenius 0.891 0.903 0.918 0.940 0.964 0.937 0.927
Offset 0.947 0.948 0.943 0.957 0.965 0.948 0.925
Snmf/r 0.892 0.900 0.913 0.927 0.944 0.926 0.911
Snmf/l 0.893 0.903 0.920 0.941 0.965 0.957 0.949

Table 3.1 provides the average cell-sparseness and the standard deviation (in parentheses). We can see

that for all eight matrix factorization algorithms the cell-sparseness has the highest values and smallest

standard deviation values when r = 8. Similarly, Table 3.2 shows that for all eight matrix factorization

algorithms, the information gain has the highest values when r = 8 as well. When we consider the higher

cell-sparseness and information gain as the criteria, both criteria indicate that r = 8 is the proper rank value.

We now look at the rank estimation approach based on percentage (or counts) of classified cells (see Section

2.2.2). For each matrix factorization algorithms, we calculate the counts of classified cells for the cut-off

value α = 0.5, 0.6, 0.7, 0.8, and 0.9. We only present Table 3.3 for Lee algorithm and leave all the other

seven tables in Supplementary 5.

22



Table 3.3: Number of Classified Cells for Given Rank and Cutoff, Lee Algorithm, for FSD

Cutoff

Rank
4 5 6 7 8 9 10

0.5 211 250 300 350 400 400 398
0.6 200 250 300 350 400 396 378
0.7 200 250 300 350 400 393 325
0.8 200 250 300 350 400 388 242
0.9 200 250 300 350 400 356 145

The sample size of first simulated data is n = 400. There is a very clear indication that r = 8 is the proper

rank value. Other seven matrix factorization algorithms also give the same rank estimation r = 8. However,

in turns of clarity, Lee and Frobenius give the most clear indication followed by Offset, Snmf/r, and Snmf/l

and then Brunet, nsNMF, and KL.

Another idea of rank estimation is to use the degree of confusion of the confusion matrix. For all eight

matrix factorization algorithms, we have done the classifications and found the confusion matrices and then

the degree of confusion of the confusion matrix. The results are in Table 3.4.

Table 3.4: Degree of Confusions for Different Algorithms and Ranks for FSD
Rank 4 5 6 7 8 9 10

Lee 0.096 0.094 0.016 0.000 0.000 0.038 0.040
Brunet 0.000 0.000 0.000 0.000 0.000 0.052 0.000
nsNMF 0.000 0.000 0.000 0.000 0.000 0.000 0.018
KL 0.000 0.000 0.000 0.000 0.000 0.000 0.004
Frobenius 0.096 0.092 0.020 0.000 0.000 0.000 0.055
Offset 0.108 0.047 0.075 0.012 0.000 0.004 0.000
Snmf/r 0.000 0.038 0.012 0.000 0.000 0.004 0.007
Snmf/l 0.000 0.076 0.012 0.004 0.000 0.004 0.028

From Table 3.4, we can see that the degree of confusion is zero when rank r = 8 for all eight matrix factor-

ization algorithms. For some algorithms, the degree of confusion also equal to zero when the rank r is less

than 8. The reason for that is because of the fact that all the rows in each group from first simulated data

are highly correlated. Hence, they will stay together in classification process. Collectively, when we look at

the degree of confusion for all eight methods, it will suggest that the rank value r = 8.

As we mentioned in Section 2.2.2, we can also use the Euclidean distance to estimate the rank value r.

For eight matrix factorization algorithms, we have calculated the Euclidean distance between Xm×n and
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Wm×r ×Hr×n for rank r value between 4 and 10. It is very clear that the Euclidean distances decreasing

significantly when r increasing from 4 to 8 and from r = 8 and above, the Euclidean distances remain more

or less the same for all eight matrix factorization algorithms. These facts indicate that further increasing r

value beyond 8 do not improve the accuracy of the approximation of matrix factorization. Hence r = 8 is

the proper rank value. See Table 3.5 below.

Table 3.5: Euclidean Distance for Different Algorithms and Ranks for FSD

Method

Rank
4 5 6 7 8 9 10

Lee 1976.14 1849.25 1724.67 1612.46 1512.66 1510.31 1507.91
Brunet 2008.75 1883.10 1767.66 1619.39 1514.15 1512.13 1514.35
nsNMF 2140.37 2036.33 1933.50 1824.66 1730.49 1740.30 1744.80
KL 2027.93 1899.19 1791.87 1626.47 1514.13 1514.44 1514.55
Frobenius 1976.14 1849.25 1724.66 1612.45 1512.67 1512.01 1507.87
Offset 2083.92 1967.88 1764.40 1634.21 1512.81 1510.44 1510.92
Snmf/r 1976.14 1849.25 1724.69 1612.48 1512.72 1510.30 1507.99
Snmf/l 1976.14 1849.24 1724.66 1612.44 1512.66 1510.36 1507.96

We have also carried out the same simulation study for a fixed random seeding. The numerical results are

kept in Supplementary 5 and the summary of them is in Figure 3.1. The findings are summarized as follows.

1. Based on the cell-sparseness

We found that for all eight matrix factorization algorithms the cell-sparseness has the highest values when

r = 8 and also has the smallest standard deviation values when r = 8.

2. Based on the information gain

Similarly, we found that for all eight matrix factorization algorithms, the information gain has the highest

value when r = 8 as well.

3. Based on the counts of classified cells

There is a very clear indication that r = 8 is the proper rank value by using all eight matrix factorization

algorithms. In turns of clarity, Lee and Frobenius give the most clear indication followed by Offset, Snmf/r,

and Snmf/l and then Brunet, nsNMF, and KL.

4. Based on the degree of confusion of confusion matrix

Similar to the ICA seeding case, the estimated rank value is r = 8.
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5. Based on the Euclidean distance

For eight matrix factorization algorithms, we have calculated the Euclidean distance between Xm×n and

Wm×r ×Hr×n for rank r value between 4 and 10. It is very clear that the Euclidean distances decreasing

significantly when r increasing from 4 to 8 and from r = 8 and above, the Euclidean distances remain more

or less the same for all eight matrix factorization algorithms.

All the above conclusions are the same as when we were using ICA seeding. Hence, for our first simulated

data, we find that two different seedings, eight different matrix factorization algorithms, and five different

rank estimation criteria have reached the same conclusion. That is, the proper rank for the first simulated

data is r = 8 although there are some minor differences in classification. The reason for this perfect result

is due to the perfectly designed data set. When the data set is not that ideal, the conclusions would not be

that great anymore. We will see this in the next section.

Figure 3.1: Rank Estimation for FSD using Random Seeding
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3.2 Simulation II

3.2.1 The Design of the Second Simulated Data (SSD)

We have designed our second simulated data, stored in matrix Ym×n, in a similar manner as the first simu-

lated data. However, the second simulated data is designed to have the following features instead:

1. All the rows within group 1, group 2, and group 3 are highly correlated and they are not correlated

with the rows in any other groups.

2. All the rows within group 4, group 5, and group 6 are correlated. All the rows among group 4, group 5,

and group 6 are also correlated but they are not correlated to the rows in any other groups.

3. All the rows within group 7 and group 8 are correlated. All the rows between group 7 and group 8 are a

bit less correlated but they are not correlated to the rows in any other groups.

With the above features, a good NMF algorithm should classify the cells in group 1, 2, or 3 into three

different metacells and classify all the cells in group 4, 5, and 6 into a single metacell. For the cells in group

7 and 8, the NMF algorithm may classify all of them into a single metacell or into two different metacells if

it is more sensitive. Hence, we should expect the estimated rank value r = 5 or 6 when we run the matrix

factorization procedures. With this expected outcome, our simulation study could compare the performances

among all the eight algorithms, two different seeding methods and five different rank estimation criteria.

Again, the way of design a Ym×n is not unique. The following is the way of our design:

The Design of Group 1:

Step 1

Row 1 has 50% (2500) components with values 0 and 50% (2500) components with values randomly selected

between 1 and 10 with different weights (see the table below for the weights). Shuffle the components in

random order.

Counts 1 2 3 4 5 6 7 8 9 10

Weights % 55 20 10 5 4 2 1.6 1.2 0.8 0.4

Step 2

Let Row 1 = Row 2 = ... = Row 50

(Duplicate row 2, row 3, ..., row 50. At this moment, row 1, row 2, ..., row 50 are all the same).
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Step 3

Change all the rows (row 1, row 2, ..., row 50):

For each row i, (i = 1, ..., 50), randomly choose 10% (500) numbers between 0 and 9 (uniformly) and use

these values to replace 10% (500) randomly chosen components in row i. (Now, all the 50 rows in group 1

are similar but different from each other).

The Design of Group 2 and Group 3:

Do the same thing for Group 2 and Group 3 as we did for Group 1 except the following changes:

Group 2

Each row in Group 2, has 55% (2750) components with values 0 and 45%(2250) components with values

randomly selected between 1 and 10 with different weights (use the same table for the weights).

Group 3

Each row in Group 3, has 60% (3000) components with values 0 and 40%(2000) components with values

randomly selected between 1 and 10 with different weights (use the same table for the weights).

The Design of Group 4, Group 5, and Group 6:

Step 1

Row 151 has 65% (3250) components with values 0 and 35%(1750) components with values randomly se-

lected between 1 and 10 with different weights (use the same table for the weights). Shuffle the components

in random order.

Step 2

Let Row 151 = Row 152 = ...= Row 300

Duplicate row 152, row 153, ..., row 300. At this moment, all the rows in group 4, Group 5, and Group 6

(from row151 to row 300) are all the same.

Step 3
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For each row i in Group 4, (i = 151, ..., 200), randomly choose 5% (250) numbers between 0 and 9 (uniformly)

and use these values to replace 5% (250) randomly chosen components in row i. (Now, all the 50 rows in

group 4 are similar but different from each other).

Step 4

For each row i in Group 5, (i = 201, ..., 250), randomly choose 10% (500) numbers between 0 and 9 (uni-

formly) and use these values to replace 10%(500) randomly chosen components in row i. (Now, all the 50

rows in group 5 are similar but different from each other).

Step 5

For each row i in Group 6, (i = 251, ..., 300), randomly choose 15% (750) numbers between 0 and 9 (uni-

formly) and use these values to replace 15%(750) randomly chosen components in row i. (Now, all the 50

rows in group 6 are similar but different from each other).

The Design of Group 7 and Group 8:

Step 1

Row 301 has 70% (3500) components with values 0 and 30% (1500) components with values randomly se-

lected between 1 and 10 with different weights (use the same table for the weights). Shuffle the components

in random order.

Step 2

Let Row 301 = Row 302 = ...= Row 400 Duplicate row 302, row 303, ..., row 400. At this moment, all the

rows in group 7 and Group 8, (from row 301 to row 400) are all the same.

Step 3

For each row i in Group 7, (i = 301, ..., 350), randomly choose 500 numbers between 0 and 9 (uniformly)

and use these values to replace 500 randomly chosen components within the FIRST 2500 components (do

not change the Last 2500 components) in row i. (Now, all the 50 rows in group 7 are similar but different

from each other).

Step 4

Do the same to Group 8 as what we did to Group 7: For each row i in Group 8, (i = 351, ..., 400), randomly
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choose 500 numbers between 0 and 9 (uniformly) and use these values to replace 500 randomly chosen com-

ponents within the LAST 2500 components (do not change the FIRST 2500 components) in row i. (Now,

all the 50 rows in group 8 are similar but different from each other).

The matrix Ym×n is in Supplementary 3 and the covariance matrix of Ym×n is in Supplementary 4. From

the covariance matrix of Ym×n, we clearly see that Ym×n has all our desired features.

3.2.2 The Results and Conclusions of Simulation II

The simulation study and discussion in this section are parallel to the previous Section 3.1.2 except using

the second simulated data instead of the first simulated data. We have conducted the study for both a fixed

random seeding and ICA seeding over eight different matrix factorization algorithms. This time, we are

presenting the tables for the random seeding and keep all the tables for ICA seeding in Supplementary 6.

The second simulated data is designed in the way that the proper rank r should be 6 or 5 (second best

choice). The following tables are the simulation results for a fixed random seeding.
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Table 3.6: Mean Normalized Spareness and (SD) for Different Algorithms and Ranks for SSD

Method

Rank
4 5 6 7 8 9 10

Lee 0.81 (0.24) 0.85 (0.14) 0.88 (0.15) 0.85 (0.16) 0.77 (0.19) 0.75 (0.19) 0.71 (0.20)
Brunet 0.84 (0.18) 0.84 (0.20) 0.91 (0.13) 0.87 (0.17) 0.82 (0.18) 0.76 (0.19) 0.86 (0.18)
nsNMF 0.88 (0.16) 0.84 (0.21) 0.78 (0.24) 0.98 (0.07) 0.91 (0.17) 0.92 (0.14) 0.92 (0.13)
KL 0.84 (0.18) 0.85 (0.20) 0.91 (0.13) 0.87 (0.17) 0.82 (0.18) 0.76 (0.19) 0.86 (0.18)
Frobenius 0.81 (0.24) 0.85 (0.14) 0.88 (0.15) 0.85 (0.16) 0.77 (0.19) 0.75 (0.19) 0.71 (0.20)
Offset 0.89 (0.14) 0.92 (0.05) 0.93 (0.04) 0.88 (0.12) 0.85 (0.15) 0.83 (0.17) 0.81 (0.19)
Snmf/r 0.81 (0.23) 0.86 (0.10) 0.89 (0.09) 0.73 (0.18) 0.69 (0.19) 0.68 (0.17) 0.67 (0.16)
Snmf/l 0.84 (0.24) 0.91 (0.08) 0.93 (0.08) 0.78 (0.19) 0.88 (0.13) 0.76 (0.19) 0.84 (0.15)

We can see that seven matrix factorization algorithms have the highest average cell-sparseness occurred at r

= 6 except nsNMF at r = 7. However, there is no clear big drop of average cell-sparseness take place from

r = 5 to r = 6 or from r = 6 to r = 7 for some of the algorithms. Hence, the rank estimation based on the

cell-sparseness among different algorithms are not very consistent.

Table 3.7: Information Gain for Different Algorithms and Ranks for SSD

Method

Rank
4 5 6 7 8 9 10

Lee 0.943 0.941 0.948 0.938 0.914 0.905 0.891
Brunet 0.951 0.945 0.963 0.954 0.941 0.923 0.952
nsNMF 0.968 0.948 0.938 0.991 0.974 0.973 0.971
KL 0.951 0.945 0.964 0.954 0.941 0.923 0.952
Frobenius 0.943 0.941 0.948 0.938 0.914 0.905 0.891
Offset 0.963 0.962 0.966 0.949 0.937 0.928 0.918
Snmf/r 0.942 0.940 0.950 0.904 0.887 0.876 0.865
Snmf/l 0.952 0.959 0.965 0.925 0.946 0.910 0.931

In Table 3.7, we find that seven matrix factorization algorithms have the highest information gain occurred

at r = 6 except nsNMF at r = 7. However, the information gain for other rank values are very close to

each other cross the range of rank r values for every one of the eight matrix factorization algorithms. Also,

there is no significant drop of information gain between any two consecutive rank r values for every matrix

factorization algorithm. Therefore, information gain criterion is unable to estimate the proper rank value

convincingly.

As we discussed in Section 2.2.2, we can also estimate the rank value based on the counts of classified cells for

different cut-off value α = 0.5, 0.6, 0.7, 0.8, and 0.9. Again, we only present the Table 3.8 for Lee algorithm

and leave all the other seven tables in Supplementary 6.
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Table 3.8: Number of Classified Cells for Given Rank and Cutoff, Lee Algorithm, for SSD

Cutoff

Rank
4 5 6 7 8 9 10

0.5 400 400 400 394 377 375 347
0.6 350 400 400 381 354 331 308
0.7 350 393 361 358 316 287 284
0.8 308 350 350 323 285 240 220
0.9 299 283 330 275 180 176 122

In Table 3.8, we can see clearly Lee algorithm gives the preference to r = 6 first and to r = 5 second.

When we exam the tables of the counts of classified cells for all eight algorithms, we find the following:

1. Brunet and KL algorithms give the clear preference to r = 6 only.

2. Lee, Frobenius, Offset, Snmf/r, and Snmf/l give the first preference to r = 6 and the second prefer-

ence to r = 5.

3. Unfortunately, nsNMF method gives the preference to r = 4 only. Hence it has failed to estimate

the proper rank value.

The following Table 3.9 are the degree of confusion for the second simulated data with a fixed random

seeding and r = 4, 5, ...10 for all eight matrix factorization algorithms.
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Table 3.9: Degree of Confusions for Different Algorithms and Ranks for SSD

Method

Rank
4 5 6 7 8 9 10

Lee 0.000 0.000 0.000 0.041 0.070 0.128 0.094
Brunet 0.000 0.000 0.000 0.019 0.079 0.163 0.183
nsNMF 0.000 0.000 0.059 0.000 0.108 0.163 0.213
KL 0.000 0.000 0.000 0.019 0.079 0.163 0.183
Frobenius 0.000 0.000 0.000 0.041 0.070 0.128 0.094
Offset 0.069 0.000 0.000 0.041 0.058 0.074 0.094
Snmf/r 0.000 0.000 0.000 0.094 0.129 0.081 0.103
Snmf/l 0.000 0.000 0.000 0.000 0.064 0.065 0.130

From Table 3.9, we find that the degree of confusion is zero when rank r = 5 for all eight matrix factorization

algorithms. For r = 4 and r = 6, the degree of confusion is also zero for seven out of eight algorithms. This

will suggest that the proper rank value could be 5, or 6, or possibly 4.

We are now using the Euclidean distance to estimate the rank r value. For eight matrix factorization

algorithms, we have calculated the Euclidean distance between Ym×n and Wm×r × Hr×n for rank r value

between 4 and 10. We find that, other than nsNMF algorithm, all seven matrix factorization algorithms

have a significant drop of Euclidean distance from r = 4 to r = 5 and a quite big drop from r = 5 to r = 6.

From r = 6 and above, the Euclidean distances are stable. These facts suggest that the proper rank value is

r = 5 or r = 6.

For nsNMF algorithm, there is a significant drop of Euclidean distance from r = 4 to r = 5. From r = 5 and

above, the Euclidean distances are more or less the same. This fact suggests that the estimated rank value

is r = 5. This estimation is not as good as the other seven algorithms. See Table 3.10 below.
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Table 3.10: Euclidean Distance for Different Algorithms and Ranks for SSD

Method

Rank
4 5 6 7 8 9 10

Lee 1922.76 1773.80 1746.92 1743.02 1739.23 1735.38 1731.89
Brunet 1945.80 1786.42 1748.55 1746.06 1744.57 1744.01 1740.14
nsNMF 2070.74 1931.88 1952.43 1930.13 1935.68 1943.78 1948.07
KL 1945.80 1786.42 1748.55 1746.06 1744.57 1744.01 1740.14
Frobenius 1922.76 1773.80 1746.92 1743.02 1739.23 1735.38 1731.89
Offset 1987.09 1777.63 1750.12 1745.74 1741.59 1737.30 1733.16
Snmf/r 1922.78 1773.84 1746.95 1745.44 1741.33 1738.01 1734.23
Snmf/l 1922.77 1773.81 1746.92 1745.41 1739.13 1737.56 1731.49

We have also carried out the same simulation study for ICA seeding. The numerical results are kept in

Supplementary 6 and the summary of them is in Figure 3.2. The findings are summarized as follows.

1. Based on the cell-sparseness

Similar to the random seeding case, we find that seven matrix factorization algorithms have the highest

average cell-sparseness occurred at r = 4 except nsNMF at r = 5. Also there is no clear patten for the

average cell-sparseness values over the rank r value.

2. Based on the information gain

We find that seven matrix factorization algorithms have the highest information gain occurred at r = 6

except nsNMF at r = 7. We also find that the information gain for other rank values are very close to

each other cross the range of rank r values for every one of the eight matrix factorization algorithms and

there is no significant drop of information gain between any two consecutive rank r values for every matrix

factorization algorithm.

3. Based on the counts of classified cells

We find that Lee, Frobenius, Offset, Snmf/r, and Snmf/l give a clear indication that the proper rank value of

r is either r = 5 or r = 6. However, Brunet and KL give indication of r = 4 or r = 6, and nsNMF algorithm

gives the preference to r = 7.

4. Based on the degree of confusion of confusion matrix

Similar to the random seeding case, the estimated r value could be 5, or 6, or possibly 4.
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5. Based on the Euclidean distance

When we use the Euclidean distance as a measure to estimate the rank value, the random seeding and ICA

seeding behave the same way for all eight different matrix factorization algorithms.

In summary, for the second simulated data, we have the following observations:

1. For the sake of rank estimation, there is a tiny difference between random seeding and ICA seeding.

2. The criteria based on cell-sparseness and information gain have failed to identify the proper rank value.

3. Based on the number of classified counts criterion, seven matrix factorization methods (other than

nsNMF algorithm) have been successfully estimating the rank value.

4. All eight matrix factorization algorithms have quite successfully identified the proper rank values when

they compound with the criteria of the number of classified counts, the degree of confusion, or the Euclidean

distance.

5. In comparison the performance among all eight matrix factorization algorithms, we find that Lee, Frobe-

nius, Offset, Snmf/r, and Snmf/l algorithms are better than Brunet and KL algorithms and then followed

by nsNMF algorithm.

As our simulated data here is a very good imitation of the single-cell data, the above summary should

provide us some guidelines for applying NMF to the real single-cell gene expression data.

Here are some general recommendations: (1) For the seeding methods, we suggest to using random seeding

and to take multiple runs if possible in the hope to achieve better approximation. (2) For the rank esti-

mation criteria, we prefer to using the counts of classified cells, the degree of confusion and the Euclidean

distance over the cell sparseness and the information gain. (3) Among eight factorization algorithms (overall

speaking), we suggest to using Lee, Frobenius, Offset, Snmf/r, and Snmf/l over Brunet and KL and nsNMF

is not recommended.
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Figure 3.2: Rank Estimation for SSD using ICA Seeding
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Chapter 4

Assessment on a Real Single-Cell

Gene Expression Data

In the previous chapter we have investigated NMF using pure simulated data. In this chapter, we move on to

test all NMF algorithms by applying them to a real single-cell gene expression data using the same design.

The real data do not contain gold-standard truth, however has biologically validated labels of cell-types,

which can also be deemed as approximately ground truth in our analysis.

4.1 Descriptions of the Single-Cell Gene Expression Data

The single-cell gene expression data we have used here is from profiling of mouse blood cells using CEL-seq2.

The gene expressions were profiled by high throughput sequencing on Mus musculus (house mice) [25].

From computational viewpoint, we are dealing with 383 cells (there is a missing cell) and 19903 genes.

Out of the 383 cells there are 16 clusters, labelled A-P, as well as 5 cell types (labelled 1 through 5). We

have 48 of cell type 1, 96 of cell type 2, 96 of cell type 3, 95 of cell type 4, and 48 of cell type 5.

4.2 Gene Selection and Data Filtering

The rank estimation is one of the challenges in NMF. The high dimensionality is another challenge when

we apply NMF to gene expression data. Our single-cell gene expression data has 383 rows (cells) and 19903

columns (genes). With this high dimension, some of the packages or algorithms may not be able to run or

to run within a reasonable amount of time. On the other hand, some of the genes are highly relevant in cell
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classification and the others are less relevant in cell classification. We can achieve data reduction by selecting

the important genes (delete the less important genes) for classification purpose. There are different ways for

gene selection. We may select the important genes based on (1) gene density, (2) gene sparseness, (3) gene’s

relative expression, and (4) gene’s variance.

Here are the detailed descriptions for these gene selection criteria:

1. Gene density

In the original data set, we define the j-th gene density as the ratio of the number of non-zero entries and

the length of the column. We may choose the genes with density higher than some predetermined value (say,

0.05, 0.06, 0.07, 0.08, or 0.09) and delete the rest.

2. Gene sparseness

Similar to the cell sparseness, we define the j-th gene sparseness (based on the original data matrix X) as

√√√√(

m∑
i=1

(X̄ij)2)

where X̄ is the normalized X column wise. We may choose the genes with sparseness higher than some

predetermined value.

3. Gene’s relative expression

In matrix X̄, we view each entry as the relative expression of a gene in a cell. We may choose the genes with

the highest value of entries in X̄ higher than some predetermined value.

4. Gene’s variance

In X matrix, we find the variance for each column (gene). We will select the genes with variance higher than

some predetermined value.

In practice we could use any one (or some) of the above criteria to select genes hence reduce the dimension

of the original data.

In our study, we are using gene’s variance to select genes for our single-cell gene expression data. The
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reason of using gene’s variance is straight forward as the gene with smaller variance across cells indicates

less importance in classification.

4.3 Results on Real Data

Our study in this section is based on reduced data instead of the original single-cell gene expression data.

We have used the gene variance criteria (mentioned in previous section) to select 4903 influential genes to

get the reduced data. Hence, our reduced data has 383 rows and 4903 columns.

Our two simulated data in Chapter 3 are well designed with known features (hence we know what to

expect). When we are dealing with real data sets, things could be vaguer and more complicated. We have

conducted a study to our reduced single-cell gene expression data using two seeding methods, eight NMF

algorithms, and five rank estimation criteria. First, we discuss the results based on a fixed random seeding.

The numerical results for a fixed random seeding are summarized into the following five tables:
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Table 4.1: Mean Normalized Spareness and (SD) for Different Algorithms and Ranks

Method

Rank
2 3 4 5 6 7 8

Lee 0.53 (0.30) 0.53 (0.27) 0.44 (0.22) 0.42 (0.19) 0.40 (0.17) 0.35 (0.17) 0.32 (0.17)
Brunet 0.78 (0.23) 0.77 (0.22) 0.55 (0.22) 0.54 (0.20) 0.57 (0.18) 0.54 (0.18) 0.57 (0.17)
nsNMF 0.90 (0.24) 0.81 (0.27) 0.72 (0.26) 0.72 (0.25) 0.66 (0.24) 0.67 (0.23) 0.62 (0.24)
KL 0.78 (0.23) 0.77 (0.22) 0.55 (0.22) 0.54 (0.20) 0.57 (0.18) 0.54 (0.18) 0.57 (0.17)
Frobenius 0.53 (0.30) 0.53 (0.27) 0.44 (0.22) 0.42 (0.19) 0.40 (0.17) 0.35 (0.17) 0.32 (0.17)
Offset 0.58 (0.29) 0.57 (0.25) 0.43 (0.20) 0.44 (0.17) 0.41 (0.16) 0.39 (0.16) 0.32 (0.16)
Snmf/r 0.58 (0.28) 0.54 (0.24) 0.50 (0.22) 0.41 (0.18) 0.44 (0.17) 0.31 (0.10) 0.26 (0.08)
Snmf/l 0.75 (0.32) 0.75 (0.29) 0.69 (0.27) 0.66 (0.23) 0.71 (0.20) 0.93 (0.15) 0.80 (0.17)

Table 4.2: Information Gain for Different Algorithms and Ranks

Method

Rank
2 3 4 5 6 7 8

Lee 0.934 0.899 0.859 0.838 0.821 0.790 0.769
Brunet 0.964 0.946 0.891 0.872 0.866 0.845 0.845
nsNMF 0.985 0.963 0.935 0.927 0.905 0.900 0.880
KL 0.964 0.946 0.891 0.872 0.866 0.845 0.845
Frobenius 0.934 0.899 0.859 0.838 0.821 0.790 0.769
Offset 0.939 0.907 0.859 0.846 0.823 0.803 0.770
Snmf/r 0.939 0.903 0.870 0.834 0.832 0.787 0.746
Snmf/l 0.964 0.948 0.926 0.914 0.927 0.979 0.938

Table 4.3: Number of Classified Cells for Given Rank and Cutoff, Lee Algorithms

Cutoff

Rank
2 3 4 5 6 7 8

0.5 383 352 303 261 217 164 128
0.6 356 307 214 179 145 99 76
0.7 315 253 143 109 75 49 39
0.8 254 181 88 54 24 18 13
0.9 138 84 24 12 5 4 2
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Table 4.4: Degree of Confusions for Different Algorithms and Ranks

Method

Rank
2 3 4 5 6 7 8

Lee 0.232 0.280 0.472 0.481 0.467 0.521 0.566
Brunet 0.092 0.096 0.169 0.277 0.227 0.224 0.197
nsNMF 0.147 0.116 0.173 0.212 0.275 0.311 0.358
KL 0.092 0.096 0.169 0.277 0.227 0.224 0.197
Frobenius 0.232 0.280 0.472 0.481 0.467 0.521 0.566
Offset 0.180 0.243 0.466 0.501 0.462 0.453 0.550
Snmf/r 0.191 0.308 0.312 0.445 0.415 0.301 0.275
Snmf/l 0.184 0.184 0.288 0.376 0.211 0.195 0.348

Table 4.5: Euclidean Distance for Different Algorithms and Ranks

Method

Rank
2 3 4 5 6 7 8

Lee 5159.78 3586.60 3014.03 2471.43 2305.73 2175.24 2133.20
Brunet 10230.83 9331.46 6152.68 3984.70 3492.36 3090.97 2999.26
nsNMF 13713.12 11958.96 10143.90 9672.59 9356.40 9346.36 10118.21
KL 10230.84 9331.49 6152.97 3984.70 3492.35 3090.97 2999.26
Frobenius 5159.77 3586.58 3014.03 2471.43 2305.73 2175.24 2133.20
Offset 5177.32 3610.19 3039.93 2499.07 2303.73 2226.60 2135.39
Snmf/r 5189.93 3658.62 3149.33 2688.10 2671.68 3110.50 2817.71
Snmf/l 5214.88 4945.25 3329.15 3038.51 8223.60 7988.17 6326.41

Table 4.1 are the average cell-sparseness and the standard deviation values (in parentheses) for eight different

matrix factorization algorithms. We can see that all seven matrix factorization algorithms except nsNMF

have highest average cell-sparseness value occurred when r = 2 and r = 3 and there is a big drop occurred

from r = 3 to r = 4. This fact indicates that the proper r value is r = 3. For nsNMF method, there is a big

drop of average cell-sparseness value from r = 2 to r = 3 and from r = 3 to r = 4. This indicates that the

proper r value may be r = 2 or r = 3.

Table 4.2 are the information gain values for eight different matrix factorization algorithms and for rank r

values from 2 to 8. We find that some matrix factorization algorithms have a big drop of the information

gain values occurred from r = 2 to r = 3 and some other algorithms have a big drop from r = 3 to r = 4.

This indicates also that the proper r value may be r = 2 or r = 3.

Table 4.3 presents the number of classified cells for Lee algorithm and for the cut-off value α = 0.5, 0.6, 0.7, 0.8

and 0.9. We leave all the other seven tables in Supplementary 7. We can see that the number of classified
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cells have highest values when r = 2. There is a clear drop off occurred from r = 2 to r = 3 and from r = 3

to r = 4. The other seven algorithms exhibit the same thing. Hence, the estimation of r value is r = 2 or

r = 3 by the number of classified cells criterion.

In Table 4.4, we have calculated the degree of confusion for eight matrix factorization algorithms and for

rank r values from r = 2 to r = 8. We have noticed the following:

(1) For Snmf/r method, there is a clear increase in the degree of confusion for r from 2 to 3 and from 4 to 5.

(2) For Brunet, nsNMF, and KL algorithms, there is a clear increase in the degree of confusion for r from 3

to 4 and from 4 to 5.

(3) For the other four algorithms, they all have a clear increase in the degree of confusion for r from 3 to 4.

From the degree of confusion view point, majority of the algorithms suggest that r = 3 might be the proper

rank value or possibly r = 4.

Table 4.5 are the Euclidean distance for eight different algorithms and for r value from 2 to 8. We have

observed that the Euclidean distance for nsNMF algorithm has no clear trend. For all the other seven algo-

rithms, there is a clear drop in the Euclidean distance for r value from 4 to 5 and remain stable after r = 5.

Hence, as far as the Euclidean distance concern, the proper rank r value should be r = 5.

When we look into the results based on the ICA seeding, we come to the same conclusion as the fixed

random seeding. That is, among all the eight algorithms and five estimation criteria, most of them suggest

r = 3 and some of them suggest r = 2, 4, or 5. In practice, people usually do not consider the case of

r = 2, as r = 2 will have highest cell-sparseness value and information gain values most of the time if not

all the time. Hence, for this single-cell gene expression data, we should look at r = 3, 4 and 5 for further study.

The numerical results for the ICA seeding are kept in Supplementary 7 and the summary of them is in

Figure 4.1.
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Figure 4.1: Rank Estimation for Single-Cell Data using ICA Seeding
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4.4 Confusion Matrices of Single-Cell Data

Mathematically, we have ways to estimate the proper rank value r or a few possible r values. In practice,

the suggested r values will be subject to further biological interpretations. Ideally, the number of metacells

is the same as the number of biological subpopulations (cell types in our case). In this case the confusion

matrix is a square matrix. Hence, matching the metacells to cell types is clear and the interpretation is

straight forward. However, the estimated r value may be less than or greater than the number of cell types.

When the r value is less than the number of cell types, it indicates that some of the cells in different cell

types will be classified into the same metacell. On the other hand, when the r value is greater than the

number of cell types, it indicates that some of the cells in the same cell type will be classified into different

metacells. It is beneficial to look at a few possible r values and their confusion matrices and ask for the

meaningful interpretations from biologists.

For our single-cell gene expression data, the estimated r value is r = 3 (by majority of the methods)

and the number of cell types is 5. Here we present the three confusion matrices correspond to r = 3, 4, and
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5 by Lee algorithm.

M1 =



8 30 10

91 5 0

0 12 84

2 90 3

1 38 9



M2 =



5 16 1 26

81 3 0 12

0 8 80 8

2 48 0 45

1 19 1 27



M3 =



8 5 7 1 27

2 76 17 0 1

4 0 4 78 10

28 0 15 0 52

11 1 3 1 32


We find the degree of confusion for M1 is 0.2796, for M2 is 0.4723, and M3 is 0.4811. From the degree

of confusion viewpoint, we may prefer the classification by matrix M1. However, in practice we will need

the knowledge in biology or in genetics to decide which classification will make more sense and will have

meaningful interpretation in biological context.
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Chapter 5

Stability of NMF

As we mentioned in Section 1.3, one of the challenges in NMF is its stability, especially when the sample size

is not substantially larger than the number of terms (which is genes in single-cell data). So, the impact of

the sample size to the stability of NMF is an important property to study. Another common concern is the

impact of initialization to the stability of NMF. Because there is no global minimization algorithm due to the

non-convexity of the loss function and also the structure of loss function is dependent on each target matrix.

Researchers found that different initialization could leads to different local minimum of the loss function. So

the end result of NMF is sensitive to the choice of the starting point of NMF algorithms. In this chapter, we

study the stability of NMF over the sample size first, then a short discussion on initialization and stability.

5.1 The Stability of NMF Over the Sample Size

In this section, we investigate the stability of NMF over the sample size n.

5.1.1 Motivation

The stability of Non-Negative Matrix Factorization (NMF) can vary depending on the sample size. In gen-

eral, the stability of NMF can be influenced by several factors, including the inherent properties of the

data and the specific algorithm or implementation used. However, when it comes to the sample size, the

following observations might be possible: (1) When the sample size is small, the stability of NMF may be

compromised. Limited data points can lead to instability in the factorization process, making it challenging

to obtain consistent and reliable results. (2) As the sample size increases, the stability of NMF tends to

improve. With more data points, the algorithm can better estimate the underlying structure of the matrix,

leading to more consistent factorization results. However, it’s important to note that the stability can still
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be influenced by the complexity and variability of the data. (3) With a sufficiently large sample size, NMF

tends to become more stable. Adequate data points allow for more accurate estimation of the basis vectors

and coefficients, leading to robust factorization results. The extracted factors are more likely to capture the

essential patterns and structures present in the data.

In general, as the sample size increases, NMF tends to become more stable and reliable. With a larger

number of samples, NMF has access to more information, which can help improve the accuracy and robust-

ness of the factorization. It provides a better estimation of the underlying structure in the data and reduces

the potential impact of noise or outliers. However, the exact behavior of NMF with respect to sample size

can vary depending on the specific dataset and the algorithm used. In some cases, a small sample size may

still yield reliable results if the data exhibits clear patterns or if the algorithm is designed to handle limited

data. Conversely, even with a large sample size, NMF may struggle if the data is noisy, highly variable, or

lacks a discernible structure.

In summary, while increasing the sample size generally improves the stability of NMF, it is essential to

consider the characteristics of the data and the algorithm’s limitations. It is always recommended to eval-

uate the performance of NMF with different sample sizes and assess the robustness of the results across

multiple experiments to draw reliable conclusions.

5.1.2 Sample Size Verse Stability

We are now going to investigate the impact of the sample size to the stability of NMF. We start with our

two simulated data sets.

For our first simulated data, the sample size is 400 with 50 in each of the eight groups. We proportionally

choose 50%, 60%, 70%, 80%, and 90% samples from each group. These percentage correspond to the sample

size of 200, 240, 280, 320, 360 respectively. For each percentage, we repeatedly take random sample 50 times

and then calculate the following: (1) mean and standard deviation of cell-sparseness, (2) information gain,

(3) 1- degree of confusion, (4) adjusted Euclidean distance (the Euclidean distance divided by the number

of rows in the target matrix), and (5) percentage of correct classified cells.

The reason to use ”1 - degree of confusion” instead of degree of confusion is that it is in line with the

other criteria, cell sparseness and information gain.
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We run the simulations for all eight matrix factorization algorithms but only for a fixed random seeding

and only for rank r = 8. The results are presented in the following Figure 5.1.

Figure 5.1: Stability Over Sample Size, First Simulated Data, r = 8
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From Figure 5.1, we have observed the following:

(1) There is no clear trend for mean sparseness. The standard deviations for all algorithms are small

and there is no clear trend.

(2) The Information Gain for all the algorithms are high and stable over the sample size.

(3) The 1 - Degree of Confusion are stable (equal to one) when the sample sizes are decreased for all
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the matrix factorization algorithms. Because the first simulated data was perfectly designed and should

cause no confusion for classification.

(4) The Adjusted Euclidean Distance for all the algorithms are increased when sample sizes are decreased

with nsNMF having the largest adjusted Euclidean distance and all the others having similar and smaller

adjusted Euclidean distances.

We have also done the same simulations for our second simulated data. The results are in Figure 5.2.

Figure 5.2: Stability Over Sample, Second Simulated Data, r = 6

50 % 70% 90%

1 − degree confusion 

percent of data

1 
−

 d
eg

re
e 

of
 c

on
fu

si
on

0.
0

0.
5

1.
0

1.
5

2.
0

Lee
Brunet
nsNMF
KL
Frobenius
Offset
Snmf/r
Snmf/l

50 % 70% 90%

Information Gain 

percent of data

In
fo

rm
at

io
n 

G
ai

n,

0.
0

0.
5

1.
0

1.
5

2.
0

50 % 70% 90%

Adjusted Euclidean Distance

percent of data

A
dj

us
te

d 
E

uc
lid

ea
n 

D
is

ta
nc

e,

0
5

10
15

20
25

30

50 % 70% 90%

Mean Sparseness

percent of data

M
ea

n 
S

pa
rs

en
es

s

0.
0

0.
5

1.
0

1.
5

2.
0

50 % 70% 90%

Standard Deviation Sparseness

percent of data

S
ta

nd
ar

d 
D

ev
ia

tio
n 

S
pa

re
ne

ss

0.
0

0.
1

0.
2

0.
3

50 % 70% 90%

% Correct Classified

percent of data

%
 C

or
re

ct
 C

la
ss

ifi
ed

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

For our second simulated data, we have run the simulations for all eight NMF algorithms with a fixed random

seeding and rank r = 6. We have found the following:

(1) There is no clear trend for mean sparseness. The standard deviations have an increasing trend (with
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some fluctuations) when sample sizes are decreasing.

(2) Lee algorithm has a clear decline in information gain when the sample size is n = 200 (50% of the

original n = 400). The information gains are quite stable with small amounts of fluctuations for the other

seven NMF algorithms.

(3) For 1 - Degree of Confusion, Lee algorithm has a clear declined when the sample size is 50% of the

original sample size. All the other algorithms are stable with some small fluctuations.

(4) The Adjusted Euclidean Distance for all the algorithms are increased when sample sizes are decreased

and nsNMF has the largest adjusted Euclidean distance and all the others have similar and smaller adjusted

Euclidean distance.

(5) The percentage of correct classified remain the same (stable) for Brunet, KL, Snmf-r, and Snmf-l over

the sample size. The percentage of correct classified clearly dropped for Lee and Frobenius when sample

size is 50%. The percentage of correct classified for nsNMF is decreased when sample size is decreased. The

percentage of correct classified for Offset fluctuates when the sample size is decreased.

One thing in common for both first and second simulated data is that the adjusted Euclidean distance

is increased when the sample size is decreased. The adjusted Euclidean distance indicates the accuracy of

the matrix factorization. Hence, there is a tradeoff between the sample size and the accuracy of the matrix

factorization.

We now use the reduced single-cell gene expression data set to investigate the stability of NMF over the

sample size n. The reduced single-cell gene expression data has the sample size of 383 with 5 different known

cell types. We proportionally choose 50%, 60% ,70%, 80%, and 90% samples from each cell type. For each

percentage, we repeatedly take random sample 50 times and then calculate the following: (1) mean and

standard deviation of cell-sparseness, (2) information gain, (3) 1- degree of confusion, (4) adjusted Euclidean

distance, and (5) percent of correct classified cells.

We have run the simulations for all eight NMF algorithms but only for a fixed random seeding and only for

rank r = 5. The results are presented in the following Figure 5.3.
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Figure 5.3: Stability Over Sample Size, Single-Cell Data, r = 5
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From Figure 5.3, we have found the following:

1. There is no clear trend for mean sparseness. The Snmf/l has the highest mean cell-sparseness val-

ues, nsNMF second, Brunet and KL third, and followed by the other four algorithms. Also, the standard

deviations of the sparseness have no clear trend. The nsNMF has the largest standard deviation values,

Brunet, and KL second, and followed by the other five algorithms.

2. The information gain for all eight algorithms are stable over the sample sizes. The Snmf/l has the

highest information gain values, nsNMF second, Brunet and KL third, and followed by the other four algo-

rithms. The order for mean cell sparseness and information gain are the same as these two quantities are

very closely related.
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3. The 1 - Degree of Confusion also does not affected by the changing of the sample size with Brunet,

nsNMF, KL, and Snmf/l have relatively higher values and the other four algorithms have relatively lower

values.

4. The adjusted Euclidean distance is the only quantity that is affected by the sample size. The adjusted

Euclidean distances are increased when sample sizes are decreased for all the algorithms. The nsNMF has

the largest adjusted Euclidean distance, Snmf/l the second, Brunet and KL the third, followed by the other

four algorithms. This may suggest that the different matrix factorization algorithms convergent to different

local minimum of the loss function used for NMF.

5. The percentage of correct classified remain stable for all the seven algorithms except for Snmf/l. The

Snmf/l has a clear decline trend when the sample size is decreased. The Brunet, nsNMF, and KL have

relatively higher percentage of correct classified cells than the other five algorithms.

All the above observations are very similar and quite consistent with what we have observed for our two

simulated data.

5.2 Initialization and Stability

In Section 2.1.2, we have introduced two new random seedings. In this section, we first compare the per-

formance of our two new random seedings with the package build in random seeding. Then we give a short

discussion on the impact of initialization on the stability of NMF.

5.2.1 Compare New Random Seedings with the Build-in Random Seeding

We are now going to compare the performances of our random seedings (RS1 and RS2) with the package

build in random seeding (BIRS) in turns of running time. Here, we refer running time as user time. In NMF,

user time represents the amount of CPU time used by the NMF algorithm to execute the user’s task. It

includes the time spent on matrix operations, data manipulation, and other computations specific to NMF.

Typically, user time is the more relevant measure when considering the performance and efficiency of the

NMF algorithm, as it directly reflects the time spent on the actual computations performed by the algorithm.

We are using the Lee and Brunt algorithms to run NMF with RS1, RS2, and BIRS for two fixed seeds.

We have done the simulations using our two simulated data and the single-cell gene expression data (see
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Chapter 3 and Chapter 4 for details). The running times are presented in the following six tables. (In these

tables, the number 2020 and 2023 are the two fixed random seeds.)

Table 5.1: Running Times for First Simulated Data and Lee Algorithm
r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 Sum

RS12020 115.105 207.536 117.750 211.909 135.483 239.205 251.042 1278.03
RS12023 105.501 184.462 136.353 154.482 212.712 239.825 251.648 1284.983
RS22020 124.159 152.048 114.019 191.188 135.162 252.142 251.785 1220.503
RS22023 108.428 143.636 151.367 192.897 220.957 239.534 250.889 1307.708
BIRS2020 181.020 312.078 180.341 340.050 218.228 385.789 391.597 2009.103
BIRS2023 166.774 297.096 217.586 239.456 344.560 392.137 395.400 2053.009

Table 5.2: Running Times for Second Simulated Data and Lee Algorithm
r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 Sum

RS12020 235.491 315.722 335.506 352.577 222.216 235.376 246.818 1943.706
RS12023 277.028 317.830 334.633 354.648 225.732 236.155 246.898 1992.924
RS22020 198.068 316.418 332.804 349.922 223.431 235.604 246.669 1902.916
RS22023 257.946 318.695 335.553 244.673 224.684 271.950 246.367 1899.868
BIRS2020 220.383 310.564 325.732 345.030 357.744 379.051 399.768 2338.272
BIRS2023 280.908 313.354 327.537 342.537 364.385 377.902 398.691 2405.314

Table 5.3: Running Times for Single-Cell Data and Lee Algorithm
r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 Sum

RS12020 187.771 234.242 378.275 388.170 405.209 427.114 393.810 2414.591
RS12023 159.716 284.226 378.388 386.527 406.251 426.648 448.484 2490.24
RS22020 189.706 277.836 350.909 381.554 398.800 429.301 453.253 2481.359
RS22023 187.198 287.402 349.502 352.230 374.401 374.878 395.889 2321.5
BIRS2020 196.937 215.580 350.275 352.641 363.613 380.121 389.607 2248.774
BIRS2023 161.945 280.173 373.905 382.800 401.274 425.827 444.230 2470.154
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Table 5.4: Running Times for First Simulated Data and Brunet Algorithm
r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 Sum

RS12020 222.616 378.222 182.064 224.730 239.802 523.534 586.022 2356.99
RS12023 218.250 216.512 211.871 195.682 407.380 551.275 584.156 2385.12
RS22020 296.282 300.940 250.779 298.182 251.183 524.005 586.226 2507.59
RS22023 338.046 277.543 196.239 206.359 352.635 551.169 582.686 2504.67
BIRS2020 215.627 358.435 181.313 219.949 236.596 536.772 588.073 2336.76
BIRS2023 205.776 190.029 211.260 193.915 397.759 555.392 589.123 2343.25

Table 5.5: Running Times for Second Simulated Data and Brunet Algorithm
r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 Sum

RS12020 218.888 258.402 276.682 487.782 517.872 549.828 541.090 2850.54
RS12023 209.819 156.184 226.557 490.210 518.344 552.613 316.374 2470.10
RS22020 214.153 220.579 458.876 490.165 515.556 551.696 315.159 2766.18
RS22023 264.703 156.453 338.429 502.774 518.122 552.120 315.080 2647.68
BIRS2020 197.695 253.676 284.866 490.183 520.966 556.162 321.226 2624.77
BIRS2023 224.692 156.234 227.210 489.914 521.663 556.846 400.700 2577.25

Table 5.6: Running Times for Single-Cell Data and Brunet Algorithm
r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 Sum

RS12020 269.702 109.002 311.936 277.345 281.229 364.884 373.712 1987.81
RS12023 168.264 140.732 303.601 324.469 333.430 360.268 330.036 1960.8
RS22020 244.424 117.437 318.42 327.209 292.067 278.053 375.231 1952.84
RS22023 156.583 196.494 291.539 328.933 279.245 231.899 371.836 1856.53
BIRS2020 476.594 249.127 374.854 562.861 592.029 740.744 737.002 3733.21
BIRS2023 301.502 290.458 602.875 672.985 661.153 739.168 766.912 4035.05

From the above results, it is clear that running times for RS1 and RS2 are (1) more or less the same, (2) less

than, or (3) much less than the running times for BIRS. For instance, the running times for RS1 and RS2

are about 50% of the running times for BIRS with Single-Cell Data and Brunet Algorithm (see Table 5.6).

5.2.2 Discussion on Initialization and Stability

We start with a brief literature review regarding initialization and stability of NMF.

Lee and Seung [18], is the original paper introducing NMF and discussing the multiplicative update rule

for solving NMF. It is also briefly mentioning initialization. Hoyer [13], introduces NMF with sparsity con-

straints and discusses initialization methods that promote sparsity. It also touches on the stability of NMF.

In Berry, Browne, Langville., Pauca, and Plemmons [2], it presents various initialization methods for NMF

and evaluates their impact on stability and performance. Cichocki, and Zdunek wrote [5] a comprehensive

book on non-negative matrix and tensor factorizations that covers various aspects of NMF, including ini-
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tialization strategies and stability. Ding, Li, and Jordan [7], discusses the issue of non-convexity in NMF

and proposes a convex relaxation framework to enhance stability and uniqueness of the factorization. It

also touches on initialization. In Gillis, and Vavasis [11], it proposes a randomized initialization technique

called Adaptive Restart for NMF and discusses its stability and efficiency. Hsieh, Dhillon, Ravikumar, and

Sustik [14], focuses on stability issues in NMF and discusses the importance of proper initialization and

constraint enforcement for obtaining stable factorizations. Wang, and Gao [26], is a review paper provides

a comprehensive overview of NMF, including initialization techniques and stability analysis. It discusses

various initialization methods and their pros and cons. There are also some recent papers on initialization

and stability of NMF by Lin, and Morup [20] and D’Amico, Gabbolini, Bernardis, and Cremonesi, [6].

Although there are many attempts have been made to tackle the issue of initialization and stability of

NMF. None of them can solve the issue uniformly and globally which is very likely the mission impossible.

People can only solve the problem partially under some special circumstances. Here, we want to make some

brief comments between the random seedings and the deterministic seedings.

As we know that one of the common seeding methods is to use a random starting point, where the en-

tries of W0 and/or H0 are drawn from a uniform distribution, usually within the same range as the target

matrix’s entries. This method is very simple to implement. However, a drawback is that in order to achieve

stability, one has to perform multiple runs, each with a different starting point. This significantly increases

the computation time needed to obtain a better factorization.

To tackle this problem, some methods have been proposed so as to compute a reasonable starting point

from the target matrix itself. Their objective is to produce deterministic algorithms that need to run only

once, still giving meaningful results[3] [22].

It seems like the deterministic is a better option than the random seedings. However, here is our sec-

ond thought:

1. For any deterministic seeding and a given data set, it will produce a unique initial W and H matri-

ces as starting point for iteration process. Hence it will be convergent to a minimum value of the loss

function of the NMF. We can not tell it is the global minimum or a better local minimum. When we look

into the details of any deterministic seedings, we can see that they are just like another matrix factorization

process. It is somehow like that to use one matrix factorization process to find a good starting point and
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then followed by another matrix factorization process. Hence, it will cost more computational running time.

Moreover, the initial W and H matrices produced by deterministic seeding methods are not non-negative.

In order to satisfy the non-negative constraints, they either take the absolute values of W and H or make

all the negative entries in W and H to be zero. In our opinion, this will compromise the good quality that

W and H suppose to have.

2. For any random seeding (with a specific seed) and a given data set, it will produce a unique initial

W and H matrices as starting point for iteration process. It will be convergent to a minimum value of

the loss function of the NMF. Again, we can not tell it is the global minimum or a better local minimum.

However, the random seedings allow us to take multiple runs. Different runs will produce different starting

points (initial W and H matrices) and may lead to different local minimums. Hence, we might be able to

find a batter local minimum (possibly batter than deterministic seeding can produces).

A final comment:

As we can see from Section 5.1.1, our new random seedings (at least empirically) has less running times

than the build in random seeding. Practically, by using our random seedings will allow us to take more runs

of NMF. Hence, there is a batter chance to reach a better local minimum or possibly the global minimum of

the NMF.
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Chapter 6

Summary and Further Study

6.1 A Brief Summary

In this thesis, we have studied the non-negative matrix factorization, its rank estimation, classification, and

stability. We have done a large amount of simulations on two simulated data and then extended the study

to a real single-cell gene expression data. We have done the simulations by using two different seeding

methods, eight different NMF algorithms and five different rank estimation criteria. The comparison of their

performances are given. We have also investigated the stability of NMF. We have first studied the stability

of NMF over the sample size consideration and then have had a brief discussion on initialization and stability

of NMF in general. The comparison of two new random seedings with the built in random seeding are given.

The main contribution of this thesis is to test the performance of NMF and its stability, with respect

to various categories of conditions including the choice of algorithms, sample size, and initialization. The

detailed conditions that have been revealed by this thesis may generate practical impact in directing the

appropriate use of NMF in analyzing single-cell gene expression data.

Additionally, during the course of the investigation, we have created the following techniques to assist the

analysis and assessment:

1. We have proposed a numerical quantity to measure the degree of confusion of confusion matrix and then

has applied it to rank estimation.

2. We have introduced two new random seedings and the comparison of the performance with the package

build in random seeding is given. We find our new random seedings perform better than the build in random
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seeding in running time.

3. We have suggested several new criteria for rank estimation.

4. We have suggested some criteria for gene selection and data reduction.

5. We have designed two simulated data sets with desired features for simulation study.

6.2 Potential Further Work

Sometimes, a single-cell gene expression data may contain sub-populations with unknown biological identity

and functions or without gold-standard cell types. In this case, it is difficult to set up the r in the NMF

analysis.

In the context of biological data analysis, particularly in single-cell RNA sequencing (scRNA-seq) studies,

determining the gold-standard cell types and clusters is a crucial step in understanding cellular heterogeneity

and function. Determining the gold-standard cell types and clusters in real datasets involves a combination

of expert knowledge, data-driven analysis, and validation efforts. While efforts are made to ensure reliability,

it’s important to acknowledge the inherent complexities and uncertainties in the annotation process and to

continually refine annotations as our understanding of biology advances.

Mathematically, one of the approaches for clustering is to use unsupervised clustering algorithms to find

a rough estimate of sub-populations among all the cells. A possible method could be the K-means clustering

(or any other classification methods) for an initial estimate [21]. Then one can perform NMF as usual.

Matching metacells with cell types involves associating clusters or groups of cells, known as metacells,

with known cell types based on their gene expression profiles or other relevant features. This task is com-

monly performed in single-cell RNA sequencing (scRNA-seq) data analysis to assign biological annotations

to clusters of cells.

Mathematically speaking, when the r value is the same as the number of cell types, the confusion ma-

trix is a square matrix. We may want to match the metacells with the cell types based on the confusion

matrix. When the degree of confusion is low, the match could be obvious. On the other hand, when the

degree of confusion is relatively high, the matching would not be straight forward. A matching method

called Gale-Shapley Algorithm (GSA)[9] might be a possible approach.
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It’s important to note that matching metacells with cell types is an ongoing field of research. The spe-

cific method used may depend on the characteristics of the dataset, available references, and the research

question at hand. It seems worth some further study in this direction.
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