75 research outputs found

    Fault Isolation for Nonlinear Systems Using Flexible Support Vector Regression

    Get PDF
    While support vector regression is widely used as both a function approximating tool and a residual generator for nonlinear system fault isolation, a drawback for this method is the freedom in selecting model parameters. Moreover, for samples with discordant distributing complexities, the selection of reasonable parameters is even impossible. To alleviate this problem we introduce the method of flexible support vector regression (F-SVR), which is especially suited for modelling complicated sample distributions, as it is free from parameters selection. Reasonable parameters for F-SVR are automatically generated given a sample distribution. Lastly, we apply this method in the analysis of the fault isolation of high frequency power supplies, where satisfactory results have been obtained

    Dependence of resting-state-based cerebrovascular reactivity (CVR) mapping on spatial resolution

    Get PDF
    Cerebrovascular reactivity (CVR) is typically assessed with a carbon dioxide (CO2) stimulus combined with BOLD fMRI. Recently, resting-state (RS) BOLD fMRI has been shown capable of generating CVR maps, providing a potential for broader CVR applications in neuroimaging studies. However, prior RS-CVR studies have primarily been performed at a spatial resolution of 3–4 mm voxel sizes. It remains unknown whether RS-CVR can also be obtained at high-resolution without major degradation in image quality. In this study, we investigated RS-CVR mapping based on resting-state BOLD MRI across a range of spatial resolutions in a group of healthy subjects, in an effort to examine the feasibility of RS-CVR measurement at high resolution. Comparing the results of RS-CVR with the maps obtained by the conventional CO2-inhalation method, our results suggested that good CVR map quality can be obtained at a voxel size as small as 2 mm isotropic. Our results also showed that, RS-CVR maps revealed resolution-dependent sensitivity. However, even at a high resolution of 2 mm isotropic voxel size, the voxel-wise sensitivity is still greater than that of typical task-evoked fMRI. Scan duration affected the sensitivity of RS-CVR mapping, but had no significant effect on its accuracy. These findings suggest that RS-CVR mapping can be applied at a similar resolution as state-of-the-art fMRI studies, which will broaden the use of CVR mapping in basic science and clinical applications including retrospective analysis of previously collected fMRI data

    Serum 25-hydroxyvitamin D3 is associated with advanced glycation end products (AGEs) measured as skin autofluorescence: The Rotterdam Study

    Get PDF
    Advanced glycation end products (AGEs) accumulate in tissues with aging and may influence age-related diseases. They can be estimated non-invasively by skin autofluorescence (SAF) using the AGE Reader™. Serum 25-hydroxyvitamin D3 (25(OH)D3) may inhibit AGEs accumulation through anti-oxidative and anti-inflammatory properties but evidence in humans is scarce. The objective was to investigate the association between serum 25(OH)D3 and SAF in the population-based cohort study. Serum 25(OH)D3 and other covariates were measured at baseline. SAF was measured on average 11.5 years later. Known risk factors for AGE accumulation such as higher age, BMI, and coffee intake, male sex, smoking, diabetes, and decreased renal function were measured at baseline. Linear regression models were adopted to explore the association between 25(OH)D3 and SAF with adjustment for confounders. Interaction terms were tested to identify effect modification. The study was conducted in the general community. 2746 community-dwelling participants (age ≥ 45 years) from the Rotterdam Study were included. Serum 25(OH)D3 inversely associated with SAF and explained 1.5% of the variance (unstandardized B = − 0.002 (95% CI[− 0.003, − 0.002]), standardized β = − 0.125), independently of known risk factors and medication intake. The association was present in both diabetics (B = − 0.004 (95% CI[− 0.008, − 0.001]), β = − 0.192) and non-diabetics (B = − 0.002 (95% CI[− 0.003, − 0.002]), β = − 0.122), both sexes, both smokers and non-smokers and in each RS subcohort. Serum 25(OH)D3 concentration was significantly and inversely associated with SAF measured prospectively, also after adjustment for known risk factors for high SAF and the number of medication used, but the causal chain is yet to be explored in future studies. Clinical Trial Registry (1) Netherlands National Trial Register: Trial ID: NTR6831 (http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6831). (2) WHO International Clinical Trials Registry Platform: under shared catalogue number NTR6831 (www.who.int/ictrp/network/primary/en/)

    Evolution of Melanopsin Photoreceptors: Discovery and Characterization of a New Melanopsin in Nonmammalian Vertebrates

    Get PDF
    In mammals, the melanopsin gene (Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives of a single orthologous gene (albeit with duplications in the teleost fish). Here, we describe the discovery and functional characterisation of a new melanopsin gene in fish, bird, and amphibian genomes, demonstrating that, in fact, the vertebrates have evolved two quite separate melanopsins. On the basis of sequence similarity, chromosomal localisation, and phylogeny, we identify our new melanopsins as the true orthologs of the melanopsin gene previously described in mammals and term this grouping Opn4m. By contrast, the previously published melanopsin genes in nonmammalian vertebrates represent a separate branch of the melanopsin family which we term Opn4x. RT-PCR analysis in chicken, zebrafish, and Xenopus identifies expression of both Opn4m and Opn4x genes in tissues known to be photosensitive (eye, brain, and skin). In the day-14 chicken eye, Opn4m mRNA is found in a subset of cells in the outer nuclear, inner nuclear, and ganglion cell layers, the vast majority of which also express Opn4x. Importantly, we show that a representative of the new melanopsins (chicken Opn4m) encodes a photosensory pigment capable of activating G protein signalling cascades in a light- and retinaldehyde-dependent manner under heterologous expression in Neuro-2a cells. A comprehensive in silico analysis of vertebrate genomes indicates that while most vertebrate species have both Opn4m and Opn4x genes, the latter is absent from eutherian and, possibly, marsupial mammals, lost in the course of their evolution as a result of chromosomal reorganisation. Thus, our findings show for the first time that nonmammalian vertebrates retain two quite separate melanopsin genes, while mammals have just one. These data raise important questions regarding the functional differences between Opn4x and Opn4m pigments, the associated adaptive advantages for most vertebrate species in retaining both melanopsins, and the implications for mammalian biology of lacking Opn4x

    A New Fractional-Order Chaotic Complex System and Its Antisynchronization

    No full text
    We propose a new fractional-order chaotic complex system and study its dynamical properties including symmetry, equilibria and their stability, and chaotic attractors. Chaotic behavior is verified with phase portraits, bifurcation diagrams, the histories, and the largest Lyapunov exponents. And we find that chaos exists in this system with orders less than 5 by numerical simulation. Additionally, antisynchronization of different fractional-order chaotic complex systems is considered based on the stability theory of fractional-order systems. This new system and the fractional-order complex Lorenz system can achieve antisynchronization. Corresponding numerical simulations show the effectiveness and feasibility of the scheme

    Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems

    No full text
    Based on two fractional-order chaotic complex drive systems and one fractional-order chaotic complex response system with different dimensions, we propose generalized combination complex synchronization. In this new synchronization scheme, there are two complex scaling matrices that are non-square matrices. On the basis of the stability theory of fractional-order linear systems, we design a general controller via active control. Additionally, by virtue of two complex scaling matrices, generalized combination complex synchronization between fractional-order chaotic complex systems and real systems is investigated. Finally, three typical examples are given to demonstrate the effectiveness and feasibility of the schemes

    Simultaneity of Synchronization and Antisynchronization in a Class of Chaotic Systems

    No full text
    In this paper, a new synchronization phenomenon, that is, the simultaneity of synchronization and antisynchronization, is investigated for a class of chaotic systems. First, for a given chaotic system, necessary and sufficient conditions for the simultaneity of synchronization and antisynchronization are proved. Then, based on these conditions, all solutions of such synchronization phenomenon for a given chaotic system are derived. After that, physical controllers that are not only simple but also implementable are designed to realize the simultaneity of synchronization and antisynchronization in the above system. Finally, illustrative examples based on numerical simulations are used to verify the validity and effectiveness of the above theoretical results

    Complex generalized synchronization of complex-variable chaotic systems

    No full text
    Dynamical behaviors and generalized synchronization play an important role in chaotic application. In this paper, bi-stability and the Hamilton energy are discussed in a one-parameter chaotic system in complex field. Then, based on the Lyapunov stability theory, a scheme of complex generalized synchronization with regard to a complex vector map (CGS) is designed for complex dynamical system with complex parameters. Finally, CGS of coexisting chaotic attractors as well as two strictly different complex chaotic systems is achieved
    corecore