23,842 research outputs found
Electric signature of magnetic domain-wall dynamics
We study current-induced domain-wall dynamics in a thin ferromagnetic
nanowire. The domain-wall dynamics is described by simple equations with four
parameters. We propose the procedure to determine these parameters by
all-electric measurements of the time-dependent voltage induced by the
domain-wall motion. We provide an analytical expression for the time variation
of this voltage. Furthermore, we show that the measurement of the proposed
effects is within reach with current experimental techniques.Comment: 5 pages, 5 figures, update to published versio
Minimization of Ohmic losses for domain wall motion in a ferromagnetic nanowire
We study current-induced domain-wall motion in a narrow ferromagnetic wire.
We propose a way to move domain walls with a resonant time-dependent current
which dramatically decreases the Ohmic losses in the wire and allows to drive
the domain wall with higher speed without burning the wire. For any domain wall
velocity we find the time-dependence of the current needed to minimize the
Ohmic losses. Below a critical domain-wall velocity specified by the parameters
of the wire the minimal Ohmic losses are achieved by dc current. Furthermore,
we identify the wire parameters for which the losses reduction from its dc
value is the most dramatic.Comment: 4 pages (+ 4 pages of supplementary material), 4 figure
Synthesis of monodispersed Ag-doped bioactive glass nanoparticles via surface modification
© 2016 by the authors.Monodispersed spherical Ag-doped bioactive glass nanoparticles (Ag-BGNs) were synthesized by a modified Stöber method combined with surface modification. The surface modification was carried out at 25, 60, and 80 °C, respectively, to investigate the influence of processing temperature on particle properties. Energy-dispersive X-ray spectroscopy (EDS) results indicated that higher temperatures facilitate the incorporation of Ag. Hydroxyapatite (HA) formation on Ag-BGNs was detected upon immersion of the particles in simulated body fluid for 7 days, which indicated that Ag-BGNs maintained high bioactivity after surface modification. The conducted antibacterial assay confirmed that Ag-BGNs had an antibacterial effect on E. coli. The above results thereby suggest that surface modification is an effective way to incorporate Ag into BGNs and that the modified BGNs can remain monodispersed as well as exhibit bioactivity and antibacterial capability for biomedical applications
On the role of magnetic reconnection in jet/accretion disk systems
The most accepted model for jet production is based on the
magneto-centrifugal acceleration out off an accretion disk that surrounds the
central source (Blandford & Payne, 1982). This scenario, however, does not
explain, e.g., the quasi-periodic ejection phenomena often observed in
different astrophysical jet classes. de Gouveia Dal Pino & Lazarian (2005)
(hereafter GDPL) have proposed that the large scale superluminal ejections
observed in microquasars during radio flare events could be produced by violent
magnetic reconnection (MR) episodes. Here, we extend this model to other
accretion disk systems, namely: active galactic nuclei (AGNs) and young stellar
objects (YSOs), and also discuss its role on jet heating and particle
acceleration.Comment: To be published in the IAU Highlights of Astronomy, Volume 15, XXVII
IAU General Assembly, August 2009, Ian F. Corbett et al., eds., 201
Domain-wall dynamics in translationally noninvariant nanowires: theory and applications
We generalize domain-wall dynamics to the case of translationally
noninvariant ferromagnetic nanowires. The obtained equations of motion make the
description of the domain-wall propagation more realistic by accounting for the
variations along the wire, such as disorder or change in the wire shape. We
show that the effective equations of motion are very general and do not depend
on the model details. As an example of their use, we consider an
hourglass-shaped nanostrip in detail. A transverse domain wall is trapped in
the middle and has two stable magnetization directions. We study the switching
between the two directions by short current pulses. We obtain the exact time
dependence of the current pulses required to switch the magnetization with the
minimal Ohmic losses per switching. Furthermore, we find how the Ohmic losses
per switching depend on the switching time for the optimal current pulse. As a
result, we show that as a magnetic memory this nanodevice can be times
more energy efficient than the best modern devices.Comment: 5 pages, 3 figures, update to published versio
Combined overexpression of chitinase and defensin genesin transgenic tomato enhances resistance to Botrytis cinerea
The rice chitinase gene (CHI), the alfalfa defensin gene (alfAFP) and their bivalent gene (CHI-AFP) were introduced into tomato line Micro-Tom via Agrobacterium-mediated gene transfer method. Transformants were obtained and confirmed by GFP, PCR and Southern blot hybridization. One to four copies of transgene were integrated into the tomato nuclear genome. Transcription levels of chitinase, alfAFP and their bivalent gene CHI-AFP in various transgenic lines were determined using Northern blotand Western blot analysis. Performance test of resistance analyses to Botrytis cinerea with T1 generation transgenic tomato lines showed the transgenic lines exhibited higher resistance to the pathogens infected than that of the non-transgenic plants and the resistance levels were related toexpression levels of the transgene, showing dosage-effect. The transgenic tomato harboring CHI-AFP cassette showed the highest disease resistance; it suggested that co-transformation with alfAFP and chitinase gene was more effective than individual transformations on the resistance to B. cinerea. Some independent lines with high disease resistance, low variability and stable expression of transgenes could be selected for the further studies and molecular breeding
Tuberculosis incidence correlates with sunshine : an ecological 28-year time series study
Birmingham is the largest UK city after London, and central Birmingham has an annual tuberculosis incidence of 80 per 100,000. We examined seasonality and sunlight as drivers of tuberculosis incidence. Hours of sunshine are seasonal, sunshine exposure is necessary for the production of vitamin D by the body and vitamin D plays a role in the host response to tuberculosis.
Methods:
We performed an ecological study that examined tuberculosis incidence in Birmingham from Dec 1981 to Nov 2009, using publicly-available data from statutory tuberculosis notifications, and related this to the seasons and hours of sunshine (UK Meteorological Office data) using unmeasured component models.
Results:
There were 9,739 tuberculosis cases over the study period. There was strong evidence for seasonality, with notifications being 24.1% higher in summer than winter (p<0.001). Winter dips in sunshine correlated with peaks in tuberculosis incidence six months later (4.7% increase in incidence for each 100 hours decrease in sunshine, p<0.001).
Discussion and Conclusion:
A potential mechanism for these associations includes decreased vitamin D levels with consequent impaired host defence arising from reduced sunshine exposure in winter. This is the longest time series of any published study and our use of statutory notifications means this data is essentially complete. We cannot, however, exclude the possibility that another factor closely correlated with the seasons, other than sunshine, is responsible. Furthermore, exposure to sunlight depends not only on total hours of sunshine but also on multiple individual factors. Our results should therefore be considered hypothesis-generating. Confirmation of a potential causal relationship between winter vitamin D deficiency and summer peaks in tuberculosis incidence would require a randomized-controlled trial of the effect of vitamin D supplementation on future tuberculosis incidence
Fuzzy decision-making fuser (FDMF) for integrating human-machine autonomous (HMA) systems with adaptive evidence sources
© 2017 Liu, Pal, Marathe, Wang and Lin. A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems
Moxifloxacin Replacement in Contemporary Tuberculosis Drug Regimens Is Ineffective against Persistent Mycobacterium tuberculosis in the Cornell Mouse Model
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a leading killer worldwide, and disease control is hampered by ineffective control of persistent infections. Substitution of moxifloxacin for isoniazid or ethambutol in standard TB regimens reduces treatment duration and relapse rates in animal studies and four-month regimens were not non-inferior in clinical trials. Resuscitation promoting factor (RPF) dependent bacilli have recently been implicated in M. tuberculosis persistence. We aimed to investigate the therapeutic effects of moxifloxacin substitution in the standard drug regimen for eradicating colony forming count (CFU) positive and RPF-dependent persistent M. tuberculosis using the Cornell murine model. M. tuberculosis infected mice were treated with regimens in which either isoniazid or ethambutol were replaced by moxifloxacin to the standard regimen. The efficacy of the regimens was compared to the standard regimen for bacterial CFU count elimination and removal of persistent tubercle bacilli evaluated using culture filtrate (CF) derived from M. tuberculosis strain H37Rv. We also measured disease relapse rates. Moxifloxacin-isoniazid substituted regimen achieved total organ CFU count clearance at 11 weeks post-treatment, faster than standard regimen (14 weeks), and with a 34% lower relapse rate. Moxifloxacin-ethambutol substituted regimen was similar to standard regimens in these regards. Importantly, neither moxifloxacin-substituted regimens nor the standard regimen could remove CF-dependent persistent bacilli. Evaluation of CF-dependent persistent M. tuberculosis requires confirmation in human studies, and has implications in future drug design, testing and clinical applications
- …