2,016 research outputs found

    On dual description of the deformed O(N)O(N) sigma model

    Get PDF
    We study dual strong coupling description of integrability-preserving deformation of the O(N)O(N) sigma model. Dual theory is described by a coupled theory of Dirac fermions with four-fermion interaction and bosonic fields with exponential interactions. We claim that both theories share the same integrable structure and coincide as quantum field theories. We construct a solution of Ricci flow equation which behaves in the UV as a free theory perturbed by graviton operators and show that it coincides with the metric of the η\eta-deformed O(N)O(N) sigma-model after TT-duality transformation

    Indirect coupling between spins in semiconductor quantum dots

    Full text link
    The optically induced indirect exchange interaction between spins in two quantum dots is investigated theoretically. We present a microscopic formulation of the interaction between the localized spin and the itinerant carriers including the effects of correlation, using a set of canonical transformations. Correlation effects are found to be of comparable magnitude as the direct exchange. We give quantitative results for realistic quantum dot geometries and find the largest couplings for one dimensional systems.Comment: 4 pages, 3 figure

    Beyond Wigner's isobaric multiplet mass equation: Effect of charge-symmetry-breaking interaction and Coulomb polarization

    Full text link
    The quadratic form of the isobaric multiplet mass equation (IMME), which was originally suggested by Wigner and has been generally regarded as valid, is seriously questioned by recent high-precision nuclear mass measurements. The usual resolution to this problem is to add empirically the cubic and quartic TzT_z-terms to characterize the deviations from the IMME, but finding the origin of these terms remains an unsolved difficulty. Based on a strategy beyond the Wigner's first-order perturbation, we derive explicitly the cubic and quartic TzT_z-terms. These terms are shown to be generated by the effective charge-symmetry breaking and charge-independent breaking interactions in nuclear medium combined with the Coulomb polarization effect. Calculations for the sdsd- and lower fpfp-shells explore a systematical emergence of the cubic TzT_z-term, suggesting a general deviation from the original IMME. Intriguingly, the magnitude of the deviation exhibits an oscillation-like behavior with mass number, modulated by the shell effect.Comment: 13 pages, 4 figure

    Cyclic projectors and separation theorems in idempotent convex geometry

    Full text link
    Semimodules over idempotent semirings like the max-plus or tropical semiring have much in common with convex cones. This analogy is particularly apparent in the case of subsemimodules of the n-fold cartesian product of the max-plus semiring it is known that one can separate a vector from a closed subsemimodule that does not contain it. We establish here a more general separation theorem, which applies to any finite collection of closed semimodules with a trivial intersection. In order to prove this theorem, we investigate the spectral properties of certain nonlinear operators called here idempotent cyclic projectors. These are idempotent analogues of the cyclic nearest-point projections known in convex analysis. The spectrum of idempotent cyclic projectors is characterized in terms of a suitable extension of Hilbert's projective metric. We deduce as a corollary of our main results the idempotent analogue of Helly's theorem.Comment: 20 pages, 1 figur

    Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like 140^{140}Pr and 142^{142}Pm Ions

    Get PDF
    We report on time-modulated two-body weak decays observed in the orbital electron capture of hydrogen-like 140^{140}Pr59+^{59+} and 142^{142}Pm60+^{60+} ions coasting in an ion storage ring. Using non-destructive single ion, time-resolved Schottky mass spectrometry we found that the expected exponential decay is modulated in time with a modulation period of about 7 seconds for both systems. Tentatively this observation is attributed to the coherent superposition of finite mass eigenstates of the electron neutrinos from the weak decay into a two-body final state.Comment: 12 pages, 5 figure
    corecore