941 research outputs found

    Polarization Phenomena by Deuteron Fragmentation into Pions

    Get PDF
    The fragmentation of deuterons into pions emitted forward in the kinematic region forbidden for free nucleon-nucleon collisions is analyzed. The inclusive relativistic invariant spectrum of pions and the tensor analyzing power T_{20} are investigated within the framework of an impulse approximation using different kinds of the deuteron wave function. The influence of P-wave inclusion in the deuteron wave function is studied, too. The invariant spectrum is shown to be more sensitive to the amplitude of the NNπXNN \to \pi X process than the tensor analyzing power T_{20}. It is shown that the inclusion of the non-nucleon degrees of freedom in a deuteron results a satisfactory description of experimental data about the inclusive pion spectrum and improves the description of data about T_{20}. According to the experimental data, T_{20} has the positive sign and very small values, less than 0.2, what contradicts to the theoretical calculations ignoring these degrees of freedom.Comment: 18 pages, 8 eps figures, 1 picture - svjour.cls required; enlarged new version with corrections and additional figure. The Abstract and the section "Summary and outlook" have been also corrected. Final version to appear in Eur.Phys.J. A. A talk given at the International Workshop "Symmetries and Spin" (July 17-22, Prague, Czech Republic

    Proton acceleration in analytic reconnecting current sheets

    Get PDF
    Particle acceleration provides an important signature for the magnetic collapse that accompanies a solar flare. Most particle acceleration studies, however, invoke magnetic and electric field models that are analytically convenient rather than solutions of the governing magnetohydrodynamic equations. In this paper a self-consistent magnetic reconnection solution is employed to investigate proton orbits, energy gains, and acceleration timescales for proton acceleration in solar flares. The magnetic field configuration is derived from the analytic reconnection solution of Craig and Henton. For the physically realistic case in which magnetic pressure of the current sheet is limited at small resistivities, the model contains a single free parameter that specifies the shear of the velocity field. It is shown that in the absence of losses, the field produces particle acceleration spectra characteristic of magnetic X-points. Specifically, the energy distribution approximates a power law ~ξ-3/2 nonrelativistically, but steepens slightly at the higher energies. Using realistic values of the “effective” resistivity, we obtain energies and acceleration times that fall within the range of observational data for proton acceleration in the solar corona

    Results of the treatment of the patients with malignant fibro histiocytoma of low limbs soft tissues

    Get PDF
    The basis of the research was the analysis of the results of treatment of 130 patients with malignant fibrous histiocytoma of limbs soft tissues. The patients were treated at the National Cancer Institute from 1985 to 2016. The analysis made showed that the overall survival rate of the patients under examination depends on the location of the primary tumor. Indicators of recurrence-free survival differ significantly depending on the localization of the tumor. In relapsing patients overall survival is different and depends on the method of treatment. In the course of the first six years, the indicators of overall survival are better in the patients underwent only surgical treatment. The overall survival rate for all patients with MFH depends on the treatment method

    Hall current effects in dynamic magnetic reconnection solutions

    Get PDF
    The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies cH>η where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular "separator" component in the magnetic field. Only if the stronger condition c2/H > η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c2/H > η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is "head-on" (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced

    Probing the deuteron structure at small N-N distances by cumulative pion production

    Full text link
    The fragmentation of deuterons into pions emitted forward in the kinematic region forbidden for free nucleon-nucleon collisions is analyzed. It is shown that the inclusion of the non-nucleonic degrees of freedom in a deuteron results in a satisfactory description of the data for the inclusive pion spectrum and improves the description of the data about T20T_{20}. According to the data, T20T_{20} has very small positive values, less than 0.2, which contradicts the theoretical calculations ignoring these degrees of freedom.Comment: 3 pages, 2 postscript figures; to appear in the proceedings of Conference on Quarks and Nuclear Physics (QNP 2002), Julich, Germany, 9-14 Jun 200
    corecore