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The impact of Hall current contributions on flow driven planar magnetic merging solutions is
discussed. The Hall current is important if the dimensionless Hall parafeeteormalized ion skin

depth satisfiex,;> 7, wherenis the inverse Lundquist number for the plasma. A dynamic analysis

of the problem shows, however, that the Hall current initially manifests itself, not by modifying the
planar reconnection field, but by inducing a non-reconnecting perpendicular “separator” component
in the magnetic field. Only if the stronger conditioﬁ> 7 is satisfied can Hall currents be expected

to affect the planar merging. These analytic predictions are then tested by performing a series of
numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic
(MHD) equations. The numerical results confirm that the nature of the merging changes
dramatically when the Hall coupling satisfieﬁ> 7. In line with the analytic treatment of sheared
reconnection, the coupling provided by the Hall term leads to the emergence of multiple current
layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate.
However, the details of the dissipation depend critically on the symmetries of the simulation, and
when the merging is “head-on(i.e., comprises fourfold symmetryhe reconnection rate can be
enhanced. €2003 American Institute of Physic§DOI: 10.1063/1.1590980

I. INTRODUCTION rator” component—is present. A key question is how recon-

) o nection rates and Ohmic energy release rates are influenced
_ Itseems likely that Hall currents play a significant role ,y, (e exira physical ingredients, namely, electron inertia and
in magnetic merging solutions at realistic plasma resistivities 5| current effects, that derive from the generalized Ohm’s
(see Ref. 1 and the “GEM challengg"Although Hall cur- |5, according to Ref. 5 the role of the inertial term is minor,

rent effects are neglected in traditional magnetic reconnedst the Hall current can, under certain conditions, have dra-
tion models? there is mounting analytic and computational matic consequences.

evidence that Hall effects are important for plasma resistivi- |4 tact condition (1) is found to influence mainly the

ties typical of the solar corona. Reference 3, for examplege,elopment of the separator field; to affect the merging rate
provides numerical evidence that reconnection solutions Iosgignificantly a stronger conditionﬁ>77 is required. More

their Sharacteristic “;:urrent shee_:t” structure and becomespecifically, Craig and Wats8ishow that the planar merging
more “Petschek-type” due to the |r_1flut_ence of Hall C“rre”ts'problem is controlled by a dimensionless paramatehat
In general, Hall current contributions are expected to., st satisfy

become significant when the dimensionless Hall coefficient
Cy satisfies c

k=—>1 2
CH> 7, (1) 7

where is the inverse Lundquist number for the plasma. Forfor the merging rate to be appreciably affected. However, for
a typical coronal plasma witle,=10"" and a collisional large « the character of the solution completely changes and
resistivity 7= 7.=10"1* this criterion is easily satisfied. oscillations of wavelengtk/x 7~ c,, develop throughout the
Even enhanced anomalous resistivities— 7,=10°7,, reconnection region. Thus, in addition to the primary current
which may occur in turbulent current sheée unlikely to  sheet that reconnects the magnetic field, an assemblage of
undo this condition. The implication therefore, is that Hall secondary current sheets can emerge, andfoel this can
currents should be important in virtually all cases of fastlead to enhanced rates of Ohmic dissipation at the cost of
magnetic merging in the corona. reductions in the reconnection rate. This behavior contrasts

In a recent paper Craig and WatSqoint out that two-  with simulations of magnetically driven reconnection that
and three-dimensional, analytic magnetic reconnection solueport enhancements of the reconnection rate with increases
tions can be developed when Hall currents are includedh the Hall coefficienf A question that needs to be ad-
within a generalized Ohm'’s law for the plasma. This work dressed, therefore, is whether this discrepancy is an artifact
provides a detailed treatment of planar current sheet modelsf the steady-state description of Craig and Watson or a gen-
in which a perpendicular, nonreconnecting field—the “sepa-eral property of flow driven reconnection.
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The purpose of the present paper is to extend the work aémall—they are unlikely to exceeg,=10"2 even if turbu-
Ref. 5 and revisit Hall current reconnection using a fully lent value$* are assumed—very steep gradients must de-
dynamic treatment of the governing equations. After intro-velop in theB-field before a significant amount of the global
ducing the Hall magnetohydrodynami@idall MHD) equa- energy can be resistively dissipated. More generally, the dis-
tions in Sec. Il we then show in Sec. lll that a time- sipation rate is so small that the magnetic field is almost
dependent analytic reduction is possible that isolates the roleompletely frozen into the plasma. It follows that topological
of the Hall current. In Sec. Ill we also illustrate how the Hall change by magnetic reconnection can only be effective in
current provides a mechanism by which strong separataregions of high current density. Also note that the Hall coef-
fields can be induced by the planar reconnecting field comficient cy (the normalized ion skin depttsatisfies both the
ponents. It is the effect of these induced axial fields that, foinequalitiesc,> 7 and cﬁ,> 7, if a purely collisional value
x>1, dramatically modifies the characteristics of the merg-is assumed for the resistivity.
ing, and in particular the quasi-one-dimensional current  According to the analysis presented here, length scales
sheets of traditional magnetic merging. In Sec. IV we test thenay be so small, and the predicted current densities so high,
veracity of the analytic treatment using an incompressiblehat some noncollisional process of current limitatieng.,
Hall current code in periodic geometry. Our conclusions argurbulent resistivity probably has to be introduced.
presented in Sec. V. It should be recognized that the present Hall MHD equa-
tions contain several idealizations that seem inappropriate for
a true coronal plasma. The assumption of incompressibility,
for example, is a common expedient that allows a stream
A. Introduction function representation for the velocity field, while avoiding

We begin with the incompressible Hall MHD equations. the need for a detailed energy equation. Some justification is
If we then normalize field quantities according to the refer-Provided by side by side simulations of incompressible and

II. HALL CURRENT RECONNECTION EQUATIONS

ence coronal values compressible plasmas, which suggest that, as far as current
, 5 sheet scalings with resistivity are concerned, no significant
B.=1C° G, /.=10°°cm, error is incurred through the assumption of incompressibility.
n.=10° cm 3, v,=10° cms ¢, 3) This is hardly surprising since the sound travel time across a

. _ . thin current sheet is far more rapid than typical magnetic
and times with respect to the Alfaetime 74=/"c/va, We  merging time scales. However, we must also recognize that
can derive a system of dimensionless equations that goveife inequalities,,;> 7 andc?> 7 imply the limit of a strong

the evolution of the plasma. magnetic field, which is not reflected in the isotropic form of
In this formulation we can write the momentum equationthe Ohm'’s law we adopt in E(‘_(S) That is, for ana|ytic and

as computational tractability we ignore anisotropies in the the
v conductivities and pressures and thermoelectric effeszs
E-ﬂ-(V-V)V:JX B—Vp, (4)  Spitzer’ Chap. 2. In view of the many uncertainties that

arise as a result of these assumptions, and the disturbingly
wherev is the velocity,B is the magnetic fieldp is the total  high current densities that derive from the collisional treat-
plasma pressurglectron plus ioh andJ=V X B is the cur-  ment, our analysis is probably best regarded as a provisional
rent density. The generalized Ohm'’s Idignoring electron  estimate, rather than a definitive assessment of the role of

inertia effect$ is given by the equation, Hall currents in reconnecting current layers.
E=—-VvXB+ 7J+cy(IXB—-Vp,), (5 B. Planar field representation
whereE is the electric field ang, is the electron pressure It is convenient for analytic and numerical purposes to
(assumed to be a scalaThe dimensionless numbers, examine so-called 2D configurations, where andB have
c2 c all three field components but are only allowed to depend on
n= —,“—‘10714'5, Ch=— ~10°° (6) two spatial coordinates. We can then adopt stream and flux
dvp/ o 7 cwp i . ,
function representations for theandB fields,
are coefficients appropriate for collisional coronal plasmas,
wherec is the speed of lightg is the plasma conductivity, V(X,y,t) =V X2+ Wz, (99
and wy,; is the ion plasma frequendyn cgs units. o
Faraday’s law now allows us to write the evolution equa- ~ B(X,y,t)=V¢Xx2+72, (9b)

tion for the magnetic field and introduce the Poisson bracket notation typified by

JB
EZVX(VX B)—VX(nJ+cylXB), (7) [, 1= theby— Dxiby, (10)
where thev andB fields are constrained by where subscripted variables denote partial derivatives. In
V.v=V.B=0. ®) (iolrﬂnp;;lents we have that=(¢,,— ¢,,W) and B= (4,
VAN

Note that energy can only be removed from the system by From the curl of the momentum equation we note that
Ohmic dissipation. Since resistivities are always verythe planar components of the velocity field are given by
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V2 +[ V2, p]1=[V?y, ], (1) More physically, the potentials andg determine planar
disturbance fields that are advected by the background flow
axy. To achieve current localization at the origin the con-
W, +[W,¢]=[Z,¢] (12)  straint O<|B|<a must be imposed. This condition ensures
that the flow amplitudex is strong enough to localize the
disturbance functiorg(x,t) against the tendency of shear
magnetic wavesfor |8|>0) to propagate energy out of the
bt 1= nV2y+cyl ¥, Z], (13 reconnection regiof’'** In particular, becaus@ determines
while the third component of the magnetic induction equa-the curvature .Of field Iine; entering the current sheet It must
tion determines the separator field be nonvanlshlng tq qbtgm reconngcﬂon—otherwse there is
only magnetic annihilation of straight field lines supported
Zi+(Z,¢]=nV2Z+[W, ]+ cu[ V24, 4] (14 by a simple stagnation point flot.1f 3 is nonzero, then
This system completely determines the planar reconnectioffCONNEction occurs in the high current region near the ori-
problem: it forms the basis of the analytic treatment givend!n: @nd the merging is sustained by the advection of mag-
below, and the numerical treatment of a “closed” periodic N€ti¢ flux washed through the inflow boundaries + 1. The

geometry presented in Sec. IV. geometry is “open” in that flux ent(_aring through_ the side-
A key property of the Hall term is that it nonlinearly walls and rgconnected at the origin, can be ejected b){ a

couples the separator fieE(x,y,t) to the otherwise autono- magnetic sling shot through the top and bottom boundaries

mous planar field components. This coupling is particularlyy: +1. . ) )

strong in the separator field equatiéhd), which involves Sgbstltutlng _the above forms _mto_ the reconnection sys-

third order derivatives of the flux function. The development!®M gives equations for the velocity field components,

of a strong separator field is clearly manifested in the planar

while

determines the-component. The third component of Ohm’s
law gives

components of the current density - 2af+Bxg-2pg, (19
‘]:(Zy;_ZXy_Vzw)- (15)
In traditional reconnection models it is only the axial current — —7 = BXZy, (20
—V?yz, generated by the reconnecting planar field, that
contributes to the Ohmic dissipation rate, together with the magnetic field components,
2 dg
Wr]: 7| J°dV. (16) dat = Bxfy+ nOxx—CuPBXZy, (21

Given that Hall-induced separator currents increase the
magnitude of the current density, they have the potential to azﬁxWXJr NZyx+ Cri BXGxxxs (22
enhance the overall rate of magnetic energy release. We also
point out that sincéV, is measured in units BZva 287 where we have introduced the Lagrangian derivative,
~4x10% erg/s, a value oW,=10"3 for the nondimen-

sionalized problem corresponds to a sizable flare yielding i=i+vov=i—axi. 23)
approximately 18 ergs over 100 s. dt 4t ot ax

Note that Eq.(19) is an integrated form of the momentum
lll. ANALYTIC TREATMENT OF HALL CURRENT equation, valid under the assumption tfiét,t) is an even
RECONNECTION

function of x.
A. Analytic form of the solution In exploring the role of the Hall current Craig and

It is a remarkable fact that two and three-dimensionalwatsor? considered only the steady-state limit of these equa-

reconnection solutions based on a generalized Ohm’s Iations In whichf= = fg/a andW= ~ Z/a. Our main con-
: . 9 ern in this section is to give a more general dynamic treat-
can be developed analytically in the same manner as pure

resistive solutions.The simplest approach for separator re- ent, valid during the initial “development of the
T ' P PP . P reconnection current sheet, although we shall briefly revisit
connection is to analyze syster(ikl)—(14) in terms of the

. . h - model later in . I D.
Craig and Hentdhpotentials, the steady-state model later in Sec

¢=—axy+i(xt), ¢=pxy+g(x.1), 17
making the axial field replacements B. The resistive current sheet in the absence
f Hall t
W—W(x,t), Z—Z(x,t). (1g O Hall currents

Th forms ar nsistent with the develooment of N We consider first of all the simplest casg=0. In this
nese lorms are consistent w € development of & ONGeaqa the planar fields evolve independently of the perpen-
dimensional current sheet aligned with thieaxis; in fact

. . ) ) dicular components and to satisfg0) and (22) we can
they provide the leading order terms in any quasi-one-, o o
dimensional description of magnetic merging developed by

taking moments iry (compare Ref. P Z=Z,=const, W=0. (24)

Downloaded 03 Nov 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 10, No. 8, August 2003 Hall current effects in dynamic magnetic reconnection solutions 3123

Planar magnetic disturbance Scaled planar velocity disturbance

10 10 h(X,t)=f+§g. (26)

t=0
o
o

Substituting forf in (19) and(21) we obtain

0 05 1 0 05 1 3
10 10 ht—a+xhx+2ah=z(a_xgx+ 79x5) s (27

=0.6
o
o

t

0 0 gt~ @ X0x= 7Gxt BXhy, (28

10 where we have introduced

5 2 2 2_ p2
ANS at=2F - EF 29

1.2

o o
o ° 10 The important point is that since” <a* the advection of
s 5 the magnetic field occurs more slowly than the localization
o o of h. For the case of sufficiently smadt™, the right-hand
05 1 0 05 1 side of(27) can be neglected—the resistive term is negligible
Lo 10 until the current sheet builds up—with the result that
-0 ¥ h=hy()exp(—2at), (=xexpla’t), (30)
0 0
0 0.5 ! 0 0.5 ! whereh is the initialh profile. Clearlyh(x,t) is a wave that

both propagates inward and decays to zero on a fast Aifve
FIG. 1. Profiles of the planar magnetic disturbance figdt panel$ and  time scale, hence it effectively sets up the disturbance veloc-
scaled velocity disturbance fieldight panel$ at equal time intervals from ity potential at the levef = —,39/01- After the equalization

t=0 tot=2.4, showing the localization of the initial pulse. The wave peak s . .
moves from right to left as time increases. At later times the correspondingphase the magnetic field evolves according(28) with h

velocity field, when scaled by a/8, almost exactly mirrors the magnetic =0, that is
disturbance. Parameters used are0.0005,a=1, =0.4, c,=«=0. _
Ot~ @ XOx= 70xx- (3D

We can now answer the question: How long does it take
Of particular interest is how a large scale magnetic disturPefore significant dissipation sets in? First, note that the so-
bance located in the outer field is advected and localized biption in the absence of resistivity, namely,
the background flowwxy as it approaches the origin. That is, _ _ -
we are interested in how a global field disturbance with the gxH=G(&),  e=xexplat), (32
initial form, will hold during the initial advective phase. By fixing a point
_ . _ on the trailing edge of the wave profile, =1, the local-
9(x.0=G(x) with f(x,0=0, (25 ization of the wave is evident from Stib(,e_ expressiap
leads to the formation of a strong current layer at the origin=exp(—«t). However, as the field gradients build up the
A formal argument based on the Klein—Gordon equatiorresistive term will begin to assert its influence and solution
that governs the field evolution in the ideal liffit' shows  (32) will breakdown. The time of the breakdown can be es-
that even if the velocity potentiai(x,t) is negligible ini-  timated by comparingg, with the magnitude of the advec-
tially, it cannot remain so during the advection of thetive terma™xg,=a" ég,, under the assumption that the de-
disturbance field. In fact the velocity disturbance in the outerivatives of G(£) are of order unity(as befits a global initial
field equalizes, on an Alfwéc time scale, to the level disturbance This suggests that the current sheet is set up on
f=—pBg/a. By contrast the magnetic potential localizes the localization time scale
relatively slowly. B
Figure 1 shows the localization phase for an initial mag- :ima_ (33)
netic pulse of the forng(x,0)=G(x)=exp(—7x?). Although S 20 p°
the velocity potentiaf is zero initially, it builds up within an
Alfvén time to the amplitudg8g(x,t)/a, and from then on
essentially mirrors the growth and localization of the mag-
netic field. The velocity field induced by the localization
adds a transient, shearing component to the global back- 7
ground flow ¢=— axy. In this figure we have plotted the Xs=\ = (34)
disturbance fields f, /B for the scaled velocity field and
— g, for the magnetic fieldrather than the disturbance po- It follows that the current sheet is very thixg<10 ', cor-
tentialsf andg. responding to a layer of a few hundred centimeters or less.
The evolution displayed in Fig. 1 can be understood byAs discussed in Sec. Il E, the current densities implied by
an informal argument based on the behavior of the functionthis result seem too large to be physically plausible.

The trailing edge of the wave at this time, nameky,
=exp(—a 7g), now identifies the outer edge for the current
layer,
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Planar magnetic disturbance ] Perpendicular magnetic field and SetCHZO.Ol (Corresponding to a valuge= 004) For
10 this small value oty the planar magnetic fielgshown in the
T 5 0 time slices on the leftis virtually identical to the purely
. y resistive solution shown in Fig. 1, however, the perpendicu-
0 05 1 0 05 1 lar magnetic field has grown appreciably, unlike the resistive
10 case where it remains zero throughout the simulation.
3 5 opb———— To understand the growth in the perpendicular field we

t

can take the ideal approximatigié,7)=G(¢&) and substi-
05 | 0 0.5 y tute it into (39) on the assumption thagdcy> » and thatZ
=0 initially. The approximate solution foZ, namely,

0

AN . Z(tm)= 5 (G elexplza 1) (40)
0
0

0.5 1 0 0.5 1

illustrates how a rapid expg 7) growth in the separator

o/\ﬁ field is induced by the advection of the planar field. This
growth essentially mimics the time development of the pla-

0 05 P 05 ] nar current densityg,=exp(2 7)Gg. According to the
10 ! computational merging experiments of Sec. IV, this result
N ] 0 \ seems to be a general property of Hall current reconnection.
- We are interested in whether the growthZrcan inter-
05 pye y 5 Py y fere with the planar merging rate. If we compare the Hall
X X term in (35) based on(40) with the advection termu™ xg,

=a” &9,, then we deduce that the Hall term is effective for

FIG. 2. Profiles of the planar magnetic disturbance figgft) and the per- .
times greater than

pendicular magnetic field (right) for a modest value of the Hall parameter

cy=0.01 (x=0.04) at equal time intervals frot=0 tot=2.4. The initial 1 a”

condition and all other parameters are the same as for Fig. 1. Note that the y=—In——or:. (41
left-hand panels for this run are almost identical to those for Fig. 1. The [e% BCH

main difference between this simulation and the purely resistive calculation . . . .

is the evolution of a significant perpendicular field. We requirery<rs [as defined b)<33)] if t_he _Ha" termis to

modify the current sheet formation. This gives
pch
C. Influence of the Hall current = e >1 (42

. In line with the_ prgvious argument let us assume th"’,‘t th‘?/vhich, to within factors of order unity, is just conditid@)
disturbance velocity fields have been equalized according tQiiaq in the Introduction.

f=—pBg/a andW=—Z/a. If we retain the Hall terms the Figure 3 shows a run for a large value of the Hall pa-
system to be analyzed is now given by rameterc,=0.15, corresponding te=8.6. In this limit the

0i— @ XGy= 70xx— BCHXZ,, (35)  solution undergoes fundamental changes. Like the purely re-
B sistive solution there is an initial localization phase where the
Zi— a XZy= nZoct BCHX Gy (36) planar field obeys the approximate ideal solution and the

and we shall specialize to the case where the separator fieRgrpendicular field is vanishingly small. However, once the
Z is initially zero. If the Hall coefficient is nonzero we can- initial implosion is halted an outgoing whistler wave propa-
not haveZ=W=0 for all time unless the merging is strictly gates into the outer field setting up large-scale oscillations.

head-on(that is 3=0). Notice also the broadening and reduction in amplitude of the
It is convenient to introduce the “co-moving” coordi- Primary current sheetcompare the left-hand panels for
nates =2.4 in Figs. 2 and B This reduction in the currerislope
B at the origin implies a reduction in the reconnection rate.
=t é&é=xexpa t), (37)
h
so that D. Quasisteady merging
gr:Wquza_T)ggg_BCHfzgy (38)

To obtain further insight into the problem fe=1 it is
Z.=nexp2a 7)Zg it BCyexp2a 7)EQ - (39 instructive to revisit the steady-state treatment of Craig and
Watson® The equations we need to solve &B%) and (36)

The equation foiZ already suggests thgic,~ # is a nec- under the replacements—é&, Z,—0, that is,

essary condition for the importance of the Hall current. By
taking c,= »=0 we immediately recover the advection so-  £—a xg'=7g"— BcyxZ’, (43)
lution g(&,7)=G(§) of the previous section. [ ”

Figure 2 shows plots of the planar and perpendicular @ XZ'=nZ"+ Beuxg”, (44
magnetic fields for a run with a modest value of the Hallwhere€ is the flux transfer rate of the planar field. Here we
parameter. We have used the same parameters as in Figpfiovide an informal treatment based on a simple matching
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o Planar magnetic disturbance Perpendicular magnetic field The key imp"caﬂon of the Steady_state ana|ysis for

5 5 >1 is the development of oscillatory behavior over the en-
i) b | 0 tire reconnection region on the length-scale,

-5

-5 1/2

100 05 1 5o 05 1 LH=27TIBLYL_H=27T g) 48)
© 5
i'). o TN or ~—

. 5 corresponding to a standing whistler wave. This implies that

1o° 0.5 1 0 0.5 1 secondary current layers may be present in the merging so-
o s 5 lution that are quite different in character from the primary
- . [\/_ 0 \/\ current sheet that provides the reconnection. Note also, that
- 5 the flux transfer rate is very small,£= n/cy=108. Al-

=0 0.5 1 0 05 1 though the Ohmic dissipation rate of each current layer is

10 5 also weak, the overall dissipation rate may still be significant
3 5 /\/\ o \/\_/ due to the additive effect of all such layers, a point confirmed
=0 " numerically in Sec. IV C below.

1_20 0.5 1 0 0.5 1
o 5 °
P, /\/\, 0 E. Reconnection and Ohmic dissipation rates

s e y _50 e y A central question is how does the presence of the Hall

X X term alter the flux reconnection and energy dissipation rates

F1G. 3. Profiles of the ol e disturb ) and th of the solution? By invoking the previous analytic results we

. 3. Profiles of the planar magnetic disturbance and the per- .

pendicular magnetic field (right) for a large value of the Hall parameter can make some ge”era'_ c_omments based on the Changmg

cy=0.15 at equal time intervals frot=0 to t=3.2. The initial condition nature of the .SOIUt'On as is increased. )

and all other parameters are the same as for Fig. 1. This simulation now In the regime of smalk we expect the planar field to be

shows significant changes in the planar magnetic field. After the initial Io—|arge|y unaffected by the Hall term and hence the reconnec-

calization phase an outgoing whistler wave is generated that traverses tl _

outer field, setting up an oscillatory wave pattern. This large-scale osciIIa&FOn r_ate should als_o b_e unChanged' The develc_)pme_nt of per

tion is evident in both the planar and perpendicular fields. pendlculqr magnetic fle!ds_ Sh(_)U|d: however, give rise to an
increase in the power dissipation rate due to the presence of
additional currents that now flow in the plane.

) For largex the picture alters dramatically. An outgoing
argument, valid for smally and £ and largecy . A more  \histler wave(see Fig. 3 now establishes large-scale global
indepth analysis is given by Craig and WatSowho also  gscillations of the field. The effect of the wave is to transport

provide detailed numerical _e>_<amples. flux away from the primary sheet at the origin back into the
First note that at the origin we must have outer field, thereby reducing the reconnection rate. Also, as
£ the oscillations become broader with increasinge expect
g"(x=0)=—. (45  to see a drop in the Ohmic dissipation rate as the number of
K sheets in the domain, and their intensity, declines.
Next we let# and £ vanish in Eqs(43) and (44)—letting Consider for example, the Ohmic dissipation of the field

7—0 is consistent with«>1, but we must verify thaf is  in the asymptotic limitx>1 given by(46) above. We have
smalla posteriori The solution of this system with the sym- that
metries we require is then given by

2mwA\? 2mx\ . [2mx
) o o W”:ﬂ COS'2 B +S|n2 —|d
g'=Asinl—x|, Z=-Aco§——Xx]. (46) L Ly L
BCu BCu o ,
a A 4A o
We can now obtain an approximate solution to the system in =49 2 (49
H

which 7 and& are small by choosing the amplitudeso that
this solution satisfies the inner conditi¢#5). Doing this we

find This result shows that significant dissipation can be achieved

via a multiplicity of (relatively weak current layers, even for
& [ Bey collisional resistivities. For example, if we conservatively
= —<—_> (47) assume that the numerator @) is order unity and take
=10 then a dimensionless dissipation ram7~10*1 is
For this solution to be valid we need to check tbas small.  achieved. This translates to a strong power output of 4
This is clearly true if the wave amplitudé is fixed, as& X 107° erg/s. This output is achieved, not by resistive losses
~ nlcy , which does indeed tend to zerod#1. Comparing in the axial currents associated with the primary reconnec-
this approximate solution with numerical solutions of Egs.tion process, but by the Ohmic dissipation of relatively weak,
(43)—(44) we find that it is extremely accurate far=10. Hall-induced separator currents distributed throughout the

n\a
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coronal volume. We know of no other merging solution b= ag Sin(wx)sin(wy)/ i,
based on collisional conditions which is capable of ap- i )
proaching such flare-like release rates. = Bo sin(mx)sin(y)/ 7+ go cog mX)/ , (50)
There are however, two disclaimers to this result. In the W=27=0,
first place the conditiom>1 probably cannot be met if tur-
bulent, enhanced resistivities are appropriate to the merginge allowed to evolve with time over a two-dimensional dou-
Note that the oscillation length-scalé8) appropriate tox ly periodic domain - 1<x,y=<1). These initial conditions
>1 givesLy=cy~ 10755, corresponding to a rather short determine a stagnation point flow near the origin that advects
coronal length-scale of ten meters. The fact that the resultar@? initially one-dimensional magnetic disturbance field of
current densityJ=neu* corresponds to a proton sound amplitudeg, toward the origin. This magnetic disturbance is
speed ofu* =10° cm/s, a value appropriate to a very hot amplified as it is washed inward, and eventually forms a
plasma of 18 K, already suggests that some form of en-current sheet aligned with theaxis. Although the parameter
hanced, turbulent resistivity may be required to limit the®o Sets the flow amplitude—it mimic& in the previous
current® If this is the case them>1 probably cannot be analytic treatment-8, is best viewedsince pure magnetic
realized and the primary, turbulently enhanced, current she@nnihilation of the planar field is impossible in this periodic
will account for the bulk of the dissipation. geometry as a parameter which governs whether the merg-
Second, even if collisional conditions are maintained, weNg is head-on go=0) or sheared §,>0).
must remember that the present analytic theory is based on In the runs that follow we choose the parameggrto
the assumption of one-dimensional current sheets in she&hsure that, for comparison with the analytic treatment, sig-
flow velocity fields. The current sheet assumption holds goodpificant shear flows develop. Specifically we ggt=0.4 and
for conventional resistive mergirig,but as we shall see in takeao=—1 andg,=0.03. For all the runs presented in this
the next section, and as described independently by othdt@per we also fix;=»=0.001. The special case of head-on
authors® we find evidence to suggest that the quasi-onef€connection 8,=0) is discussed briefly in Sec. IVD.
dimensional current structure is undermined by the presence Numerical experiments confirm that saturation of the
of strong Hall currents. The analytic treatment is also limitegcurrent layer occurs if the flow field is not strong enough to
in its capacity to make predictions for head-on, Hall currentocalize the magnetic disturbant®This is due to the back
reconnection(because3=0 turns off the Hall current inde- Pressure of the current sheet stalling the inflow, and can be
pendently ofc,,). In the following section we explore the avoided(at any given resistivitysimply by setting the dis-
robustness of the idealized analytic solutions using a fulfurbance field amplitude sufficiently small. To simplify the
numerical treatment of the dynamic merging problem. present analysis we takg small enough to avoid saturation.

F. Summary B. Influence of the Hall term on the merging solution

The dynamic analysis of the merging problem confirms  The analytic work of Sec. Ill suggests that Hall currents
that, although Hall currents induce significant separatogan affect the planar reconnection rate only i 1. Figure 4
fields for c,,>7, they cannot change the character of theshows the perpendicular current generated by the planar
reconnection solution unless the much stronger conditiomerging field on the left and the planar currents generated by
ci>n (k>1) is met. The steady-state description also sugthe Hall term on the right. Here the solution has been al-
gests that in the asymptotic regimre-1, the solution devel-  |owed to evolve until the primary reconnecting current sheet
ops an assemblage of secondary current layers on the sizefylly developedapproximately 1.5 Alfva times. The top
scale Jk7~cy. Such layers clearly have the potential to plots, for c,y= corresponding tox=0.0002, show little
add significantly to the dissipation provided by the primarydeviation from thec,=0 case explored in Refs. 13 and 14.

reconnecting current sheet. The middle plots depict the regimg,>» (k=0.02). As
expected, the reconnecting current shgst plot) is largely

IV. HALL CURRENT RECONNECTION IN PERIODIC unaffected despite the emergence of strong currents due to

GEOMETRY the induced separator field. Finally, the lower diagrams show

the radical transformation of the central current sheet for
c2>7 (k=3). In the final plot withx>1, the classical
We now explore Hall current reconnection using a planar‘tombstone” geometry has evolved into a much sharper “ar-
periodic code based on the systefid)—(14). This code, rowhead” and an extensive array of secondary, Hall current
first developed in Ref. 14, has been extensively used anthduced, sheets has developed due to the separator field.
tested in previous studies of planar reconnectivi. The How do these figures compare with the analytic theory
present version includes Hall current and separator field cordeveloped by Craig and WatsariZet us begin by assuming
tributions and differs from{11)—(14) only in the addition of that the open boundary, one-dimensional, steady-state theory,
a fluid viscosity (which is set at the level= 7). Accurate although not strictly applicable to dynamic merging in peri-
modeling of the Hall current does, however, place sever@dic geometries, should provide a crude model for the initial
restrictions on the numerical time step since additional whisformation of the sheet. Then far>1, we expect the devel-
tler wave modes are now presdsee the Appendjx opment of periodic structures in the separator field of the
A typical set of initial conditions given by form given in(46) with length scald.; along the inflow axis

A. Introduction
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Magnetic field in the z—direction along y=0
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Z(x,0)
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Magnetic field in the z—direction along y=0
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Z(x,0)

FIG. 4. Current in the-direction — V2y (left) and amplitude of the planar
current \/szJrZy2 (right). The top plots are forcy=7%=0.001 («

=0.0002), the middle use=0.02, while the bottom plots were obtained
using k= 3. -0.2

-1 -08 -06 -04 -02 0 02 04 06 08 1
X

given by (48). Figure 5 confirms that the predictﬂjfield FIG. 5. _Slices along thE-axi_s qf th_e magnetic field in thpdirection taken
oscillations are well developed at the time of maximum dis_f‘t the t'meiof maximum dissipation. The upper plot is for 1 and the
o C ower for k=23. Notice the variation in the periods of oscillation as predicted
sipation(2.25 Alfven timeg for k=1 andx=3. by (48).
More quantitatively, in Fig. 6 we plot the computed os-

cillation length-scale for various values &f The solid line

represents the steady-state analytic predict#B), which is  sheets, with associated magnetic field lines and separatrix
in good accord with the computed values for-1. This  structures, at the time of maximum curre(@pprox. 1.5
agreement is remarkable considering that the boundary corlfven times. The top plot is for a traditional resistive re-
ditions atx= =+ 1 will interfere with the oscillatory develop- connection run withx=cy=0. Here the violation of the
ment if «x is too large, a problem exacerbated by the rela-
tively large resistivities used in numerical simulations.

There is mounting evidence in the literature that the Hall

term causes magnetic merging to become less one- |
dimensional and more Petschek-ty(see, for instance, Ref.
3). The analytic model presented here, and in Craig and —0at
Watson® is severely limited by the choice of forms ferand

B. Although our analytic model predicts a modification of
traditional current sheet merging when a large Hall term is
introduced, the current sheet still maintains its strict one-
dimensionality. It is unclear how to modify the model to
address this shortcoming, however, it is a simple matter to

109 (L)

explore these effects numerically. Indeed, we see clear evi- s2f
dence that if the disturbance field symmetries are violéied
they are in the periodic numerical cggéhen in the nonlin- 14 P — P
. . -1 -08 -06 -04 -02 0 0.2 04 086 08 1
ear regime the Hall term can severely modify the one- log ()

dlmenglonal Cu.rrent Strucmre' . FIG. 6. Here we plot the length-scale associated withZHeeld against.
_ This effect IS apparen_t In _the |0W9_r left plot of Fig. 4 and the solid line is the the analytic predictiga8), while the asterisks indicate
is also clearly illustrated in Fig. 7, which shows two currentcomputed values.
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x1072 Ohmic dissipation rate versus time

3
time

FIG. 8. Traces of the Ohmic dissipatiqhl) integrated over the entire
domain for various values of. The k=0 case shows the cyclic dissipation
due to the formation and dissipation of current sheets due only to the planar
merging. Ask increases, the Hall current sheets compound the overall dis-
sipation. However, fok>1 the structure of the planar merging is lost, and
at the same time the number of Hall sheets diminishes leading to lower
dissipation rates.

C. Ohmic decay rates as a function of &

As already mentioned, although the reconnecting current
sheet generated by the planar merging becomes less domi-
nant for larger values ok, see Fig. 4, the development of
secondary current sheets, due to the Hall-induced separator
field, can lead to enhanced dissipation over the traditional
cy=0 models. Figure 8 shows traces of the computed
FIG. 7. (Color) Plots of magnetic field line structufeed, separatrix struc- ~ Ohmic dissipation,
ture (purple and z-direction currentshades of yellow and grepm the z
=0 plane. The top plot shows the classic long thin sheet we. The

lower plot is fOI"K= 10 and plearly shows well developed current structures Wn: nj J2dv= nj (Z)2<+ Z§+ (szj/)z)dV (51)
along bothX-point separatrices.

X

over time for various values of. It is clear from these plots
disturbance field symmetries induced by the periodicthat moderate values ot allow for enhanced dissipation,
boundary conditions is unimportant and a long, thin quasi€especially at later times when the Hall current layers are well
one-dimensional current sheet is formed. This type of soludeveloped. However, there seems to be an optimum level for
tion is described well by the analytic models, which accu-the Hall current contribution, around=1, that preserves
rately predict the sheet intensity and width and the verymost of the primary current sheet, while at the same time
narrow angle of the field separatrices at the X-point. Theallowing extra dissipation from the perpendicular separator
lower plot is for the case of Hall current reconnection with field.
x=10. For this large value of the Hall term the violation of Note that, for very large values of, the total Ohmic
the symmetries has completely altered the picture. The sepadlissipation is reduced. This effect is consistent with the result
ratrix angle is now much broader and the current sheet is n649) of the previous section,
longer one-dimensional. In fact strong currents are now
aligned along both separatricies, unlike the resistive MHD _ 420
example in which current is only associated with one sepa- o
ratrix. This broadening of the X-point angle and redistribu-
tion of the current seems to be an important consequence &f marked decline in the maximum dissipation is evident in
the Hall term and it is unfortunate that it is not captured inFig. 8 for x>1 and it seems clear that the asymptotic regime
the simple analytic model presented in Sec. lll. Severals entered even for moderate valueskofNote also that this
authord®® have observed these phenomena and have sugxpression provides a plausible estimate of the actual level of
gested that the inclusion of the Hall term makes the recon©hmic dissipation found in the computations: taking
nection more Petschek-type, although we should stress that0.84, A=0.15 (see Fig. $ and x=3 yields W,=0.025,
the reconnection mechanism is quite different to that ofcorresponding to dimensional rate of?i@rg/s. This esti-
Petschek. mate, although clearly in the right ballpark according to Fig.

(for k>1). (52
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8, is expected to be accurate only in the asymptotic regime ofthich have no echo in classical resistive computatidns,
large « and only if the dissipation is achieved through quasi-suggest that Hall current reconnection is far more sensitive to

one-dimensional current layers. the initial and boundary conditions imposed on the merging
problem.
D. Symmetries in Hall current merging V. CONCLUSIONS

In the simple analytic model presented in Sec. lll and in \ye have explored the role of Hall currents in planar,
most of the numerical results presented in this section th@ynamic reconnection solutions using two distinct ap-
addition of Hall current effects has lead to a decrease in thﬁroaches. The first approach, a dynamic analytic treatment
reconnection rate. Most previous studie§ have reported pased on the assumption of quasi-one-dimensional current
that the inclusion of Hall effects can result in a dramat|c|ayers confirms that the conditian,> 7 is required for the
increase in the reconnection rate. It is not difficult to traceernergence of a significant separator component in the recon-
this discrepancy to the symmetries of the problems beingacting magnetic field. However, in line with the earlier
studied. In this work we have considered the case of She%rteady-state treatment of Craig and Watdarmuch stronger
flow reconnection, in which impacting flux surfaces are not.ndition Cﬁ>77 or equivalentlyx>1, is required if the
constrained to the fourfold symmetry of head-on mergingy,,rgeoning separator field is to influence the reconnection
Conversely, most other authors have examined highly symraie and significantly alter the morphology of the reconnect-
metric head-on reconnection configurations. ing planar field. The analytic treatment also provides a

Why does the reconnection geometry have such a dragraphic illustration of how planar magnetic field distur-
matic effect? This behavior can be explained by returning tq)ances, advected by simple stagnation point flows, can gen-
Eq. (13) and rewriting it in the form erate large axial currents, which through the mechanism of

I+, d—cyZ]= V2. (53)  the Hall current, induce large am_plitud_e separator field_s.

) i . ) In the second approach, outlined in Sec. 1V, a series of
Itis now clear that in the absence of resistivity the magnetiG, merical simulations were performed, based on shear flow
field ¢ is advected by the modified stream function, reconnection in a closed, periodic reconnection geometry.

be=d—CyZ, (540  These computations reinforce and considerably extend the
results of the analytic study. In particular, the morphology of
he reconnection solution changes dramatically#orl, as
illustrated, for example, in Fig. 7. A key question, therefore,

gg&nvt?:t?gg'g;r;: C:I((;/éﬁyvﬁ)] \c,)vtzirrev\\//iolrs dtshienlar;l\ll ifﬁgt is how the strong separator field affects the reconnection rate
N . . .~_in the critical regimecﬁ—n;. The answer seems to depend
reconnection the field is tied to the electrons and not the ions

: . . . on the details—in particular the symmetries—of the mergin
Obviously the perpendicular field can influence the recon- simulation P y ging
nection rate by altering the inflow velocities in the vicinity of . Lo

‘ 2 . . For instance, in this paper we have concentrated on the
the reconnection region, i.e., & acts to increase the inflow | f sh d . ithouah i .
speed into the sheet then the reconnection rate is increas gnera case of sheared reconnection. Althoug Increasing
peed X . . e Hall parameter generally slows down the reconnection
and vice versa. Whed=Z(x), as is assumed in our analytic

model. the perpendicular field leaves the inflow veloci rate, the resistive dissipation can, fer-1, increase due to
! perp . v the emergence of multiple secondary current layers associ-
=d¢.ldy=d¢ldy unchanged, and so it is not expected to

lead to an increase in the reconnection rate. In fac¥tfield ated with the separator field. More specifically a whistler

leads to adecreaseén the shear flow across the sheet, Whichwsc\:/iﬁgzg(naslzzﬂsl'ei "’:Ei)g;éesi’?/r"(_s'b:ﬁ I?lresse;tlr;?al:c?r ?ilglzal
acts to slow the reconnection rate by slowing the exhaus'i 9 H 7 P '

" . . or the special case of head-on reconnection, however, the
flows. Traditional head-on symmetries do not place this €< eparator field is constrained by the symmetry of the merdin
striction on the functional form af, and so two-dimensional b y y y ging

, . to vanish at all points on the inflow axis; the net result in this
Z fields can develop that enhance the inflow speeds and the. . . .
. o ! . . .~ case is an enhancement in the reconnection rate but a de-
reconnection rate. This is confimed by numerical simulations . TR . e
. crease in the global Ohmic dissipation. This sensitivity to the
for head-on reconnectionBg=0). ; X
details of the reconnection geometry appears to be a feature

A comparison of head-on and sheared reconnection . . .
! ! . of Hall current reconnection that has no analog in classical
shows that for head-on configurations the separator field . . . o )
fesistive merging. Clearly, in view of the rich structure

again mimics the build-up of the axial reconnection current. . .
present in Hall current reconnection, some care should be

Significant differences emerge, however, in the regitfie . . : : . o
. : exercised in making generalized claims based on specific
=5, where the reconnection rate is affected by the separatqr, : .
all current simulations.

field. The extra symmetry constraints implied by head-on

merging mean Fhat the induced separgtor compor?en_t_muitPPENDIXz TIME STEP LIMIT FOR HALL MHD

develop a two-dimensional structure. This leads to significant

departures from the case of sheared reconnection— In the explicit scheme we employ, the presence of whis-

computations confirm that there is now a reduction of thetler modes places severe restrictions on the numerical time
Ohmic losses with increases in the Hall coefficiept, but  step. Specifically, the CFL limit on the advective time step is

an increase in the reconnection rate. These differencesf the form,

where ¢, can be associated with the stream function for th
electron fluid [this follows—after nondimensionalizing—
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AX
At<—,
Up

wherev , is the maximum phase velocity over the mesh for
waves in the system. For purely resistive, incompressible

MHD the relevant phase velocity ig,=v +va, Wherev is
the local plasma velocity and, is the local Alfven speed.

Craig, Heerikhuisen, and Watson

Setting the determinant of this system to zero we find the
dispersion relation

4k?Bj

cuk?Bo* \/ c2k*B2+

w==x

2

However, the equations of incompressible Hall MHD admitHence the system admits four circularly polarized wafges
another type of wave, the so-called whistler wave. Thesénodified Alfven wave and a whistler wave, both traveling to
waves are more troublesome computationally than Aifve the left or righ.

waves because they are dispersive, i.e., their phase velocities

depend on the wave numbler

To see this we begin with the primitive Hall MHD equa-

In the largecy, limit w=cyk?B, and we find

w
Up:E:CHkBo.

tions and neglect diffusive effects. We linearize about a static

equilibrium with a constant fiel®8,, so that
V:Vl, B:BO+Bl
The governing equations are now given by
pV1=V X B]_X Bo,
B, =V X (V;XBg)—cyV X (VXB;XBy).
If we look for Fourier mode wave solutions of the form,
vy =1 el (kxton,
Bj_: élei(k‘x+ wt),
and make use of the divergence free nature ehdB, we
find the perturbed field vectd; must satisfy
: (k-Bo)?| 4 -
| w—p—w B]_:CH(k'Bo)kX Bl'

Letting k=KX, Bo=Bo%, and B;=(08,,,B,,) (consistent
with the divergence free conditionsve find B,, and By,
must satisfy the system

kZBZ
i| o— pwo) cuk®Bo
1y
.| =0.
k?B3 (B)
—cyk?Bg i(w— 0) 1
pw

The relevant CFL condition therefore becomes

Ax  Ax?
CHkBO_ﬂTCHBO'

At<

where we have assumed that the maximum wave number on
the mesh corresponds to point-to-point oscillations. Clearly
this new time step limit is far more severe than that for
ordinary Alfven waves, and is very sensitive to increases in
resolution.
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