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ABSTRACT
Particle acceleration provides an important signature for the magnetic collapse that accompanies a

solar Ñare. Most particle acceleration studies, however, invoke magnetic and electric Ðeld models that are
analytically convenient rather than solutions of the governing magnetohydrodynamic equations. In this
paper a self-consistent magnetic reconnection solution is employed to investigate proton orbits, energy
gains, and acceleration timescales for proton acceleration in solar Ñares. The magnetic Ðeld conÐguration
is derived from the analytic reconnection solution of Craig and Henton. For the physically realistic case
in which magnetic pressure of the current sheet is limited at small resistivities, the model contains a
single free parameter that speciÐes the shear of the velocity Ðeld. It is shown that in the absence of
losses, the Ðeld produces particle acceleration spectra characteristic of magnetic X-points. SpeciÐcally,
the energy distribution approximates a power law DE~3@2 nonrelativistically, but steepens slightly at the
higher energies. Using realistic values of the ““ e†ective ÏÏ resistivity, we obtain energies and acceleration
times that fall within the range of observational data for proton acceleration in the solar corona.
Subject headings : acceleration of particles È MHD È Sun: Ñares È Sun: magnetic Ðelds È

Sun: particle emission

1. INTRODUCTION

Although soft X-ray emission resulting from strong
plasma heating ([107 K) is probably the prime manifesta-
tion of the solar Ñare, it has often been suggested that Ñare
energy may initially reside in nonthermal particles, typically
in the form of electron and proton spectra extending to high
energies. Protons, in particular, can be accelerated to
several GeV. The energization rate for protons above 1
MeV can reach 1034 s~1, and their energy content can
exceed 1030 ergs (see Miller et al. 1997 for a review). Long-
duration solar gamma-ray Ñares are of particular interest in
this regard, since they indicate the presence of continuously
accelerated ions for several hours after the impulsive phase
(e.g., Ryan 2000).

As yet there is no universal theory that accounts for the
thermal and nonthermal signatures of the Ñare. There is,
however, a general consensus that Ñare energy is derived
from the rapid dissipation of strong-current sheets in the
low solar corona. These sheets are intimately associated
with magnetic reconnection, a resistive process thought to
be the primary mechanism of magnetic energy release. Since
a direct electric Ðeld is induced by the reconnecting mag-
netic Ðeld in the sheet, it is natural to ask whether the
induced electric Ðeld can accelerate charged particles to
typical nonthermal energies.

A large body of research has been devoted to the question
of charged-particle orbits in reconnecting current sheets in
the context of particle acceleration on the Sun and in the
geotail (e.g., Speiser 1965 ; Martens 1988 ; Zhu & Parks
1993 ; Litvinenko & Somov 1993 ; Litvinenko 1996, 1997).
Alternatively, particle orbits in the vicinity of a magnetic
X-point have been analyzed and applied to the proton ener-
gization problem in Ñares (Bulanov & Sasorov 1976 ;
Bulanov 1980 ; Bruthwiler & Zweibel 1992). Recent numeri-
cal simulations have also concentrated on the properties of
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particle orbits in X-point Ðelds (Mori, Sakai, & Zhao 1998).
The magnetic Ðeld in X-point current sheets plays a key
role in particle acceleration : although the Ðeld cannot
change the particle energy directly, it can limit the energy
gain by changing the orbit and restricting the displacement
along the electric Ðeld.

The magnetic conÐgurations considered so far, however,
su†er a major drawback. Although capturing the basic
reconnection topology, they do not represent a quasi-steady
reconnection solution. Some authors have tried to remedy
this defect by tracing charged particles in magnetic Ðeld
structures obtained by solving the magnetohydrodynamic
(MHD) equations numerically (Schopper, Birk, & Lesch
1999). Such strategies are invariably compromised by
numerical resolution ; in fact, particle gyroradii can be sig-
niÐcantly smaller than the computational mesh. Numerical
MHD experiments are also limited by the unnaturally large
resistivities required to resolve the steep Ðeld gradients that
accompany rapid magnetic merging.

Motivated by these difficulties, our aim is to investigate
particle acceleration using an exact analytic magnetic
reconnection geometry. Solutions are now available that
describe steady-state, incompressible magnetic merging at
arbitrary plasma resistivities, in both two and three dimen-
sions (Craig & Henton 1995 ; Craig et al. 1995). Numerical
simulations (Heerikhuisen, Craig, & Watson 2000) conÐrm
that the steady-state solution agrees remarkably well with
the properties of time-dependent reconnective current
sheets. In the case of two-dimensional planar Ñows, there
are two magnetic Ðeld components associated with the
current sheet : only one of theseÈthe planar Ñux pileup
ÐeldÈis capable of providing fast reconnection ; the other
component, aligned perpendicular to the Ñow, is dissipated
at a slow Sweet-Parker rate by magnetic annihilation. It is
the goal of this paper to investigate test particle orbits in the
current sheet associated with the Craig & Henton (1995)
reconnection solution and apply the results to proton accel-
eration in solar Ñares.

Of related interest is the work of Kobak & Ostrowski
(2000), who recently employed the Craig & Henton (1995)
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solution as a basis for a particle acceleration numerical
experiment. Unfortunately, their work concentrates only on
the slowly dissipating Ðeld components and neglects the
physically more interesting ““ Ñux pileup ÏÏ Ðeld. More criti-
cally, the solution they adopt (Craig et al. 1995) is valid for
two-dimensional Ñows, while their choice of parameters
implies a three-dimensional velocity Ðeld. Although Kobak
& OstrowskiÏs Ðeld conÐguration can no longer represent a
solution of the MHD equations, it seems likely that their
Ðndings regarding turbulent particle acceleration are not
seriously compromised.

A discussion of the analytic reconnection solution we
employ is given in ° 2. Our main Ðndings regarding proton
acceleration are described in ° 3. We Ðrst analyze the accel-
eration properties of generic X-point magnetic structures
before investigating the exact reconnection solution. We
investigate both the form of the spectrum and the strength
of the acceleration as a function of the e†ective plasma
resistivity g. Application of the results to the high-energy
acceleration of protons in the solar corona is presented in
° 4.

2. THE RECONNECTION SOLUTIONS

2.1. Basic Equations
We assume that the background plasma dynamics are

governed by the steady-state, incompressible MHD equa-
tions for the magnetic Ðeld B and the velocity Ðeld u. Using
cgs units and normalizing the mass density to unity, the
momentum equation can be written in the curled form

(u Æ $)X [ (X Æ $)u \ 1
c

[(B Æ $)J [ (J Æ $)B] . (2.1)

Here X \ $ Â u is the vorticity, and the current density J is
obtained from AmpereÏs law 4nJ \ c$ Â B, with $ Æ B \ 0.

The induction equation is given by

$ Â (u Â B)] g6 +2B \ 0 . (2.2)

Here the magnetic resistivity is deÐned as

g6 \ c2
4np

, (2.3)

and the electric conductivity is given, for instance, by the
classical collision-based expression p ^ 107T 3@2^ 1016
(cgs) for a fully ionized coronal plasma at temperature
T \ 106 K.

A self-consistent reconnection solution for the u and B
Ðelds is given in ° 2.2 below. The main focus of this paper is
to investigate test-particle trajectories using the equation of
motion

p5 \ q
A

E ] 1
c

v Â B
B
, p \ cmv , (2.4)

where v, q, and m are the velocity, charge, and rest mass of
the particle, and c is the relativistic Lorentz factor. Given
the u and B Ðelds, the electric Ðeld responsible for the parti-
cle acceleration is easily calculated :

E \ g6
c

$ Â B [ 1
c

u Â B . (2.5)

2.2. Magnetic Field ConÐguration
It is convenient to measure physical variables in units

appropriate to a typical coronal plasma. Non-
dimensionalization is done with respect to the following
characteristic values :

n
c
\ 109 cm~3, B

c
\ 100 G ,

L
c
\ 109.5 cm, vA \ 109 cm s~1 ,

where is the coronal number density and is then
c

vA Alfve� n
speed. In these units c\ 30, and we have a nondimensional
charge-to-mass ratio for protons of 9.067 ] 107. It is impor-
tant to note that the collision-based nondimensional resis-
tivity is given by an extremely small inverse Lundquist
number,

g \ g6
L
c
vA

^ 10~14 . (2.6)

As will be discussed later, however, due to the length scales
and large current densities involved, the ““ e†ective ÏÏ resis-
tivity is expected to be enhanced by several orders of
magnitude.

Let us now summarize the properties of the reconnection
solution discovered by Craig & Henton (1995) (see also
Craig et al. 1995 ; Craig & Fabling 1996). The magnetic and
velocity Ðelds can be written in terms of a superposition of a
global background Ðeld P and a disturbance Ðeld Q in the
following manner :

u \ P ] b
a

Q , (2.7)

B \ b
a

P ] Q . (2.8)

This construction clearly exploits the inherent symmetry in
the magnetic and Ñow Ðelds. For the simplest case of a
planar potential background and a one-dimensional dis-
turbance Ðeld, the MHD equations are exactly satisÐed by

P \ a[x,[ y,0] , (2.9)

Q \
CQ0
gk

Daw(ky),0,
Jn
2k

Z@(0)erf(ky) ] Z(0)
D

, (2.10)

where

k2\ a2[ b2
2ag

, Daw(x) \
P
0

x
exp (t2 [ x2)dt

is the Dawson function. Of the two internal scalar con-
stants, a determines the strength of the background Ñow
while 0\ o b o\ a acts as a shear parameter that controls
the angle of the X-point merging. Only one of the
separatrices has magnetic Ðeld advected across it : the other
lies along a coordinate axis (the x-axis), which also includes
the center of the current sheet y \ 0 (see Fig. 2). It is the
Dawson Ðeld component that is associated with reconnec-
tion : Ðelds aligned normal to the Ñow dissipate slowly at the
Sweet-Parker rate. Note that although dynamic numerical
simulations (Heerikhuisen et al. 2000) have conÐrmed the
overall veracity of the steady-state reconnection solution,
certain reÐnements are required (namely, equalization and
saturation as introduced below) to obtain a physical recon-
nection model.
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FIG. 1.ÈSchematic diagram of a typical x-point conÐguration (top) of
the form The separatrices (dashed lines) are given by theB \ B0(y, v2x).
lines y \ ^vx, while dash-dotted lines mark the region where exceedsB

yand signiÐcant acceleration is possible. Current density is uniformlyB
xdistributed over the entire domain.

Figures 1 and 2 provide a qualitative comparison of a
classical X-point Ðeld with the sheared X-point solution
discussed above. Given that the conÐgurations have a
superÐcially similar magnetic structure, we might anticipate
similar particle-energy spectra to arise from both models.

2.3. Application of the Reconnection Model
Since we are concerned with fast magnetic reconnection,

we begin by turning the nonplanar Ðeld component o†, so
that Z(0)\ Z@(0)\ 0. Reconnection now occurs at a neutral
point (as opposed to a planar null) and the electric Ðeld is
always aligned normal to the plane, that is,

E \ [Q0
c

zü . (2.11)

The magnitude of the disturbance Ðeld, governed by Q0,must be chosen to reÑect the physical properties of the
current sheet. One of the defects of the analytic reconnec-
tion model is that the magnitude of the disturbance Ðeld Q
is decoupled from the amplitude of the plasma Ñow deÐned
by a. A related difficulty is the apparently unbounded Ñux
pileup in the limit g ] 0. These defects can be remedied by
assuming physically reasonable equalization and saturation
conditions.

The equalization assumption determines the Ñow ampli-
tude : a is chosen so that the exhaust speed of the material

FIG. 2.ÈSchematic diagram of the Craig & Henton solution described
in section showing the Ðeld line (thin solid line) and separatrix (dashed line)
in the xy-plane. The dash-dotted line represents the line along which B

xvanishes and maximum acceleration occurs. Current is conÐned to a sheet
aligned to the x-axis.

expelled from the current sheet is determined by the local
speed based on the strength of the Ñux pile-up Ðeld.Alfve� n

To prevent unbounded reconnection rates in the limit g ] 0
we also saturate the Ðeld at some physically appropriate
level. In practice, this is achieved by choosing so that theQ0disturbance Ðeld in the sheet reaches a peak value corre-
sponding to a dimensional value, say, of G. TheBmax\ 300
equalization condition is then imposed (Litvinenko & Craig
1999, 2000 ; Craig & Watson 2000) by setting a \

We must also choose a suitable value for bBmax/Bc
\ 3.

(remembering the restriction 0 \ o b o\ a), and for all our
work we take b \ 2. Since the value of a is set by the
maximum of the Dawson function, we Ðnd that Q0^ 5Jg.

The saturation and equalization assumptions have the
physically desirable e†ect of removing much of the arbitrary
parameterization from the reconnection model. Only the
degree of shear, parameterized by b, remains free. Analytic
arguments (Craig & Watson 1999) now show that the peak
magnetic Ðeld, electric Ðeld, and current sheet width scale
with resistivity, independently of b, in the following way :

BmaxD g0, ED g1@2Bmax3@2 , l D g1@2Bmax~1@2 . (2.12)

Although the formal scalings with g are the same as for
Sweet-Parker, the ampliÐcation factor due to Ñux pile-up,
say, gives strongly enhanced dissipation for evenBmaxD 10,
collisional resistivities.

More critically, the smallness of the collisional resistivity
(g ^ 10~14) implies the sheet becomes so thin that the
MHD approximation breaks down, leading to the develop-
ment of an enhanced anomalous resistivity. In such cases it
is useful to invoke an ““ e†ective ÏÏ resistivity several orders of
magnitude larger than the classical value (see Litvinenko &
Craig 2000 and references therein). Although the e†ective
resistivity is almost certainly inÑuenced by local factors
such as temperature and density, we consider plausible
values mainly in the range In practice,10~8 ¹ geff ¹ 10~6.
resistive dissipation in the sheet could be enhanced by a
variety of factors, for instance by the development of a
current-driven instability.

The adoption of an e†ective resistivity clearly provides
the simplest approach to modeling the super-Dreicer recon-
necting Ðeld. More reÐned treatments, for example, includ-
ing collisionless terms using a generalized OhmÏs law
(Bhattacharjee, Ma, & Wang 1999), do not allow such a
convenient analytic description. It seems likely, for instance,
that the simple scaling arguments (see ° 3) that govern the
overall properties of the accelerated particles would be
compromised by more detailed treatments.

2.4. Calculation of the Particle Spectra
Let us assume that we have constructed the magnetic

Ðeld conÐguration according to the prescriptions given
above. This Ðeld is to remain static and undisturbed as far
as particle acceleration is concerned, consistent with the
short acceleration times of the particles relative to the

reconnection timescale. Although the degree ofAlfve� nic
shear determined by b is arbitrary, we must remember that
b determines the angle of the X-point Ðeld, and that an
appreciable perpendicular Ðeld component must be present
in the current sheet for particle energies to remain Ðnite. In
practice we take b \ 23a.

Although we assume a steady-state reconnection model,
we could equally well have taken a time-dependent recon-
nection solution. In fact, the analytic model we assume is
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known to provide a good instantaneous picture of the
reconnection region associated with global, time-dependent
merging simulations (Heerikhuisen et al. 2000). It should be
remembered that the analytic MHD solution we employ is
characterized by the magnetic and velocity Ðelds that
increase with distance from the X-point and have inÐnite
energy when integrated over all space. Hence, the model
cannot be used to predict the total amount of energy rel-
eased in the form of fast particles in the course of a Ñare. In
this preliminary study, however, our main concern is to
provide a simple and tractable platform for particle acceler-
ation at realistic plasma resistivities, and not to provide a
breakdown for the details of the magnetic energy release.

An embedded Runge-Kutta method is used to integrate
the particle trajectories in time. The time step is determined
by the local truncation error, which is related, in turn, to the
local forces experienced by the particle. Each particle trajec-
tory typically comprises millions of time steps. Although
there are formally more accurate methods for solving orbit
problems, it should be remembered that the chaotic nature
of the trajectories (Chen & Palmadesso 1986 ; Litvinenko
1993) negates the beneÐts of such schemes, particularly as
we are interested in determining the associated energy
spectrum.

3. ACCELERATION SPECTRA

3.1. X-Point Field Models
Recall that magnetic X-points are generally expected to

produce well-deÐned particle acceleration spectra. Consider
a Ðeld of the form

B \ B0(y, v2x, 0) , (3.1)

as illustrated in Figure 1. The spectrum is deduced by
noting that an initial burst of acceleration due to the electric
Ðeld is e†ectively cut short by the local magnetic Ðeld. This
occurs when the speed has built up sufficiently for thev

zLorentz force to gyrocapture the particle and thus(Dv
z
B

M
)

limit the displacement along the z-axis and the energy gain.
Suppose a stationary particle is placed somewhere along

the x-axis of the X-point Ðeld (eq. [3.1]). In this case the
equation of motion (eq. [2.4]) reduces to

p5
x

\ [q
c

v
z
B

M
, (3.2)

p5
z
\ qE] q

c
v
x
B
M

, (3.3)

where and is the y-componentE \ Ezü , B
M

\B
M
(x)\B0 v2x

of the Ðeld (eq. [3.1]). If particles are distributed on y \ 0
initially, all trajectories are limited to the y \ 0 plane.

It is easy to see that the particle displacement along the
z-axis is limited. Assume for simplicity that the perpendicu-
lar magnetic Ðeld does not change signiÐcantly over theB

Mparticle orbit. Since the peak kinetic energy occurs when
and is maximum, the displace-p

z
\ 0 p

x
\ [qB

M
z/c\ p

ment must coincide with the instantaneous gyrora-z\ zmaxdius of the particle. It follows that in the nonrelativistic case
(Speiser 1965),

E\ qEzmax\ 2mc2
A E
B
M

B2
. (3.4)

This result may also be deduced by noting that the electric
Ðeld is transformed away in the reference frame moving

along the x-axis with the speed

V \ [ cE
B
M

, (3.5)

a result that conÐrms that 2V is indeed the maximum speed
achieved by the particle in the rest frame. In the moving
frame the particle simply gyrates at the Ðxed energy given
by 12mV 2.

An energy spectrum may be derived from the relation
(Martens 1988)

dn
dE

\ dn
dx

dx
dE

, (3.6)

where n is the particle number density. Since equa-B
M

D x,
tion (3.4) gives the scaling

E\ Ax~2 , (3.7)

where A\ 2mc2E2/v2. If we neglect relativistic e†ects and
assume a uniform initial distribution (dn/dx \ K, constant),
then the energy spectrum should approximate

dn
dE

\ KA1@2E~3@2 , (3.8)

which implies a characteristic power-law spectrum in the
absence of any loss processes that might result in a steeper
spectrum.

3.2. X-Point Relativistic Particle Spectra
It is interesting that the argument for a power law spec-

trum breaks down in the highly relativistic case. The kinetic
energy, now manifested mainly as increase in mass rather
than speed, can again be derived by transforming away the
electric Ðeld. Using the relativistic form for the kinetic
energy, namely E\ (c2p2] m2c4)1@2[mc2, modiÐes equa-
tion (3.4) according to

E\ 2mc2 E2
(B

M
2 [E2) (3.9)

for the case of a Ðxed perpendicular magnetic Ðeld and
initially slow particles (Alekseyev & Kropotkin 1970). Of
course, the magnetic Ðeld experienced by the particle is not
Ðxed over the capture phase. The e†ect of the inhomoge-
neous magnetic Ðeld is particularly noticeable for protons
released close to the neutral point, where even slight deÑec-
tions in the x-direction lead to the particle experiencing
strong relative enhancements in (Bulanov & SasorovB

M1976). In spite of this limitation, equation (3.9) should
remain qualitatively valid, indicating that the particles can
gain very large energies in the vicinity of the X-point
deÐned by the condition Of interest is the factB

M
(x) \E.

that relativistic e†ects, which give rise to longer acceleration
times for particles near the neutral point, will tend to negate
the inhomogeneous which shortens the accelerationB

M
,

time. Hence, the evidence suggests that the nonrelativistic
constant Ðeld approximation (eq. [3.4]) can provide a good
predictor for relativistic inhomogeneous magnetic Ðeld
acceleration (see Fig. 3 and discussion below).

It is a simple matter to verify these observations numeri-
cally for the reference X-point Ðeld (eq. [3.1]). In order to
provide a comparison, we set the X-point angle speciÐed by
v to be the same as the corresponding separatrix angle in
the exact reconnection solution (see Heerikhuisen et al.
2000). With this speciÐcation, is not quite strong enoughB

M
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FIG. 3.ÈThis Ðgure shows the relationship between initial position and
maximum energy gain for particles released along the x-axis of the X-point
conÐguration (eq. [3.1]). The upper solid line represents the simpler case
where remains Ðxed over a particleÏs entire orbit, while for the lowerB

Msolid this simpliÐcation is not made. The thin straight line representsB
Mthe nonrelativistic scaling predicted by eq. (3.7).

to capture the majority of particles and so, to obtain suit-
able test conditions, we adjust the level of magnetic Ðeld (by
a factor of 10) independently of the electric Ðeld.

Figure 3 shows the computed relationship between initial
position and maximum energy. The central straight line
gives the scaling predicted by the nonrelativistic approx-
imation (eq. [3.4]). This scaling is accurate until relativistic
e†ects kick in at energies above 108.5 eV, which corresponds
to The solid line above this represents a set ofv/c^ 23.particle orbits for which, to maintain strict Ðdelity with the
analytic scaling argument, is Ðxed to its initial value onB

Meach trajectory. This curve precisely coincides with the rela-
tivistic prediction (eq. [3.9]). The lower solid line in Figure 3
represents the real X-point solution, in which increasesB

Maccording to the x-position of the particle. This e†ect clearly
decreases the expected energy gain of relativistic particles
started close to the neutral point where the initial isB

Mweak : prior to capture these particles experience ever-
increasing Ðelds because of their motion in the x-B

Mdirection.
Figure 4 shows the spectrum obtained from the lower

plot of Figure 3. The reference line represents the prediction
in equation (3.8), and it is clear that the theoretical power-
law scaling is quite well reproduced. A slight steepening is
evident at higher energies corresponding to a shallowing of
E(x) (see Fig. 3). The high-energy endpoint that lies well
above the reference line corresponds to the maximum
energy acquired by all noncaptured particles.

3.3. Results for the Reconnecting Current Sheet
Since the exact reconnection solution due to Craig &

Henton (1995) provides a model for X-point reconnection,
we might expect to achieve a spectrum in accordance with
prediction (3.8). There are, however, two key assumptions in
the analytic argument that could compromise the energy
scaling. In the Ðrst place, the calculated distribution is based
on particle capture : if the Lorentz force is too weak to halt
the acceleration before the particle exits the region, then
such a particle will acquire the maximum energy Emax\

FIG. 4.ÈSpectrum obtained from the lower line of Fig. 3, correspond-
ing to the maximum energy attained by distributing 1000 particles uni-
formly along the x-axis and releasing them from rest in the X-point Ðeld
(eq. [3.1]).

deÐned by the size of the computational box (seeqEL
c

L
ceq. [3.4]). This situation will always apply for some interval

close to the neutral point. In fact, situations could arise
where this interval covers the entire region and no spectrum
would be achieved.

The analytic argument also assumes that initial condi-
tions are chosen so that there is immediate downward accel-
eration in the weak-Ðeld region where In fact, thisB

M
[ B

x
.

assumption, although unrealistic, may not be too critical,
since any particle placed near the current sheet will migrate
into the weak-Ðeld region due to the electric drift associated
with the dominant reconnecting magnetic Ðeld outsideB

xthe current sheet (see Fig. 2) and the constant electric Ðeld in
the In this case a slow inward-drift phase[zü -direction.
should precede the rapid E-Ðeld acceleration within the
sheet.

Figure 5 shows the energy versus x-position diagram for
the exact MHD solution. Three values of the resistivity are
plotted. There is close agreement with the analytic nonrela-
tivistic scaling at low energiesÈhere the individual curves
are almost indistinguishableÈbut signiÐcant departures at
relativistic energies are present. Note, however, that each
curve represents a close approximation to the X-point
model in the lower plot of Figure 3. The upper cuto† in each
E(x) plot reÑects the maximum energy gain (eq. [3.4]) of a
noncaptured particle, and since ED g1@2, the maximum
energy gain must also scale in this way.

To interpret these results, Ðrst note that the low-energy
scaling is consistent with the capture condition, being
invariant with g. That is, in the saturated solution, both E
and (at Ðxed x) scale as g1@2. Thus, for a givenB

M
\ B

yinitial position, the energy should remain invariant with g,
at least provided that x is large enough for to be e†ec-B

Mtively constant prior to capture. At high energies, the scal-
ings must separate to reÑect the increased direct Ðeld
acceleration of noncaptured particles. In turn, each energy
curve has to be consistent with the form of Figure 3.

Figure 6 shows the spectrum computed from the exact
Craig-Henton solution. The spectrum, comprising 1000
particles released with some small random thermal energy
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FIG. 5.ÈFinal energy with initial position for 50 particles evenly dis-
tributed along the positive x-axis of the Craig-Henton Ðeld of ° 2.2 and
started from rest. The three lines represent, from top to bottom, g \ 10~6,
g \ 10~7, and g \ 10~8, respectively. The solid line gives the scaling pre-
diction (eq. [3.7]). Note that we have only plotted energy of the particles
that are captured within our to cube.[L

c
L
c

of is strikingly similar to the X-point spectrum of0.1vA,
Figure 4. Again there is slight steepening due to the shallo-
wing of E(x) (see Fig. 5) and a spike at the upper energy
cuto† corresponding to noncaptured particles.

The fact that the heuristic X-point spectrum manages to
reproduce the main features of the steady-state reconnec-
tion solution conÐrms the assumption of previous studies :
that X-point current sheet models can provide a useful plat-
form for particle acceleration investigations. It should
be remembered, however, that the advantage of the exact
solution used here is that the analysis is unambiguous,
in the sense that it is uncompromised by extraneous
parameterizations.

FIG. 6.ÈSpectrum corresponding to the Ðnal energy of 1000 particles
distributed uniformly along the center of the current sheet of the Craig-
Henton Ðeld. Here we have used g \ 10~7, a \ 3, and b \ 2, and each
particle was given an initial speed in a random direction.0.1vA

3.4. Resistive Scalings
How does the maximum kinetic energy scale with resis-

tivity? Note that the nondimensional electric Ðeld always
saturates according to (Craig & WatsonE\ g1@2B max3@2
2000). Thus, using with yields theEmax\ qEzmax zmax\ L

climit

Emax^ 3 ] 1012g1@2B max3@2 eV . (3.10)

This suggests that inverse Lundquist numbers as small as
10~10 could be sufficient (taking correspondingBmax\ 10
to localized sheet Ðelds of 103 G) to produce GeV protons.
Such Ðelds are in fact capable of producing Ñare-like Ohmic
decay rates of 1028 ergs s~1 (Litvinenko & Craig 2000).

Turning now to the acceleration time of a particle cap-
tured in the sheet, we recall that the acceleration length is
simply the gyroradius For nonrelativistic motion,cp/qB

M
.

the acceleration time is one-half the gyroperiod :

qacc \nmc
qB

M

D g~1@2 . (3.11)

Note that although the gamma factor must be included in
the case of relativistic motion,

qacc \ nmc
qB

M

B
M
2 ]E2

B
M
2 [E2 , (3.12)

the (formal) scaling with resistivity due to is notB
M
(x)

undone. The relativistic factor does, however, alter the
scaling coefficient. This result is conÐrmed by the acceler-
ation times plotted in Figure 7 for the Craig-Henton model.
The weaker E-Ðeld acceleration at low resistivities leads to
longer acceleration times.

Of course, particles initially along the center line of the
sheet (x-axis) must Ðrst drift into the weak-Ðeld region
before being accelerated. An estimate of this drift time can

FIG. 7.ÈDrift time (open circles) and acceleration time (asterisks) for
three sets of particle simulations for g \ 10~6, 10~7, and 10~8. The drift
time is the same for all three runs (some slight error at small values of x is
caused by the error in estimating when the drift phase has Ðnished), and is
approximated by eq. (3.13), which is plotted as the solid line. The dashed
lines represent the analytic prediction, eq. (3.12).
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be made by taking the drift distance (see Fig. 2) andbgx/Q0dividing by the initial drift speed to givevdrift^Q0/(bx)

qdrift^
gb2
Q02

x2 . (3.13)

The predictions (3.12) and (3.13) are plotted along with the
computed values for g \ 10~6, 10~7, and 10~8 in Figure 7.
The acceleration time prediction (3.12) agrees well for par-
ticles started away from the neutral point, since for these the
implicit assumption of constant is approximately validB

Mover the acceleration phase of each particle. The drift time
prediction (3.13) is much cruder, but is clearly still a consis-
tent measure over the entire sheet.

The Ñux spectrum is of interest observationally. The Ñux
of protons into the acceleration region will be given by

Fin\ 2L
z

P
xmin

x
vin nin dx , (3.14)

and will be the same as the outward Ñux of accelerated
particles, assuming that all particles enter the acceleration
process. Using and avin\ vdrift^ Q0/(bx), Ein\ mvin2 /2,
uniform particle density the Ñux may be written asnin,

F(Ein)\
L
z
ninQ0
b

P
Ein

Emax
E~1dE .

However, we are interested in the outward Ñux in terms of
the Ðnal energy of the particles. We know from equation
(3.4) and the expression for used above that the inwardvinand outward energies are related in the following way :

Eout \
4Q02
b2g2 Ein . (3.15)

Hence, the particle Ñux in terms of the Ðnal energy will be

F(E)\ L
z
ninQ0
b

ln
AEmax

E

B
, (3.16)

where E is the Ðnal kinetic energy of each particle. It is
easiest to interpret this equation nondimensionally by
taking and b \ 2. ConcreteL

z
\ 1, nin\ 1, Q0\ 5Jg,

numbers are then obtained by taking Emax\ qEzmax^ 2Jg
] 1013 eV and the reference Ñux s~1 to given

c
vA L

c
2\ 1037

F(E)^ 2.5] 1037Jg ln
A1.6Jg ] 1013

E

B
s~1 , (3.17)

where E is also measured in eV. From this we can see that
the expected Ñux for protons above 1 MeV will be about
1.8] 1034 for g \ 10~8, with about 7% of these being
above 1 GeV.

It should be emphasized that the present particle acceler-
ation model is self-consistent only for individual test-
particle orbits, not necessarily for high-intensity particle
beams. Formally, the above estimate for the proton Ñux
should be multiplied by an efficiency factor, indicating the
fraction of particles entering the acceleration process.

It has long been recognized that strong particle currents,
as implied say by hard X-ray observations, pose severe
theoretical difficulties (see Martens 1988). Compare, for
example, the MHD reconnection current deÐned by(I

R
),

AmpereÏs law for the Ñux pileup sheet, with the current

associated with free-streaming (noncaptured) charged-
particle Ñux For g \ 10~8, we Ðnd that for an efficiency(I

P
).

factor of order unity, can exceed A by anI
P

I
R

^ 1012.5
order of magnitude. Since beam currents of this intensity
must feed-back on the reconnection model, it is safest to
regard Ñux magnitudes such as as preliminary upperI

Pestimates, rather than concrete theoretical predictions.
Although it is beyond the scope of this paper to attempt
such predictions, it appears likely that a more detailed treat-
ment taking into account Ðnite acceleration efficiency and
return currents would lead to a physically plausible total
electric current in the sheet I

P
^ I

R
.

3.5. Orbit Properties
The interpretations in the previous sections are rein-

forced by studying individual particle orbits. Figure 8 shows
part of a typical particle orbit, comprising well-deÐned
inward drift, acceleration in the reconnection region, and
capture phases. The particle starts from rest at (0.4,0,0) and
initially drifts slowly in the gyrating around[yü -direction,
the relatively strong reconnecting Ðeld When the parti-B

x
.

cle reaches the weak-Ðeld region where it is accel-B
x
B B

M
,

erated rapidly downward by the strong E Ðeld. This phase
ends when the particle speed is sufficient for the Lorentz
force to recapture the energized particle. In the Ðnal phase
the particle exits the source volume, spiraling in the yz-
plane, through the surface x \ 1.

It should be noted that in all steady-state planar recon-
nection solutions, the electric Ðeld is constant everywhere
(see eq. [2.11]). This begs the question, ““ is it possible to
acquire signiÐcant acceleration outside the current sheet? ÏÏ
We have argued that signiÐcant acceleration is only pos-
sible if test particles can gain entry, if not by in situ place-
ment then by slow drift, into the weak-Ðeld exhaust of the
reconnection mechanism.

More speciÐcally, test particles placed well outside the
current sheet will either drift into the exhaust region and get
accelerated in much same way as particles placed inside the
sheet or simply drift out of the domain without a signiÐcant
energy gain. Figure 9 shows the projection of such orbits in
the xy-plane (there is little motion in the Aszü -direction).

FIG. 8.ÈOrbit of particle started from rest at (0.4, 0, 0). Note the initial
drift phase (motion in y), followed by the acceleration phase (motion in z),
and concluded by the exit phase (motion in x).
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FIG. 9.ÈTrajectories of nine particles started well outside the current
layer (central jagged region). The dashed lines depict magnetic Ðeld lines.
We Ðnd that only those that encounter the current sheet achieve signiÐcant
acceleration.

expected, the particles drift in the E Â B direction and
attain little energy outside the current sheet where the mag-
netic Ðeld is comparatively large. Only the particles that
drift into the current sheet (originating in the lower left and
upper right quadrants) will achieve signiÐcant acceleration.

4. APPLICATION TO SOLAR FLARES

Observations of events in the solar corona have led to the
conclusion that the bulk of accelerated protons have ener-
gies within the range 0.1È10 MeV. Earth-based detectors
now and then record protons coming from the sun with
energies in the 1È5 GeV range (Ryan 2000). The particles
with the highest energies typically come from the large
gradual events that are most likely a consequence of mag-
netic Ðeld relaxation following a coronal mass ejection
(CME). The CME is likely to generate a shock wave that
contributes to particle acceleration. SigniÐcant obser-
vational evidence, however, suggests that at least some par-
ticles are energized in the current sheet formed in the wake
of the CME (Klein & Trottet 2001).

It has previously been shown (Litvinenko & Craig 2000)
that the Craig-Henton reconnection solution provides a
physical model that is capable of meeting the bulk Ñare
energy requirements, assuming a realistic turbulent resis-
tivity that corresponds to the inverse Lundquist number of
order g D 10~8. The analysis of the present paper demon-
strates that the same current sheet may be the source of
energetic protons in large solar Ñares. In particular, energies
of order g1@21013 eV are possible using Ñux pileup Ðelds of
order 300 G (Fig. 5). Another prediction of the model is that
the direct electric Ðeld acceleration in the current sheet pro-
vides not only the required proton energy but also the rate
of energy gain. Equation (3.12) indicates that a typical
proton acceleration timescale is of order 10~2 s, assuming
the transverse magnetic Ðeld in the sheet of a few gauss or
smaller. This compares favorably with timescales 0.01È0.1 s
of rapid variation of Ñare gamma-radiation produced by
energetic protons (see Litvinenko & Somov 1995 and refer-

ences therein). The observed variability is likely to reÑect a
regime of bursty magnetic reconnection.

Solar observations also indicate the existence of an
energy spectrum with a power-law or Bessel-function shape
(Miller et al. 1997). Traditional models, using relatively
weak X-point Ðelds, account for such a spectrum via the
magnetic Ðeld component perpendicular to the current
sheet. Such models do not, however, represent quasi-steady
solutions to the MHD equations, nor do they possess the
physical featuresÈsuch as shear Ñows, magneticAlfve� nic
sling shots, and rapid Ohmic dissipationÈexpected of a
plausible reconnection mechanism. It is encouraging, there-
fore, that the present model generates a power-law spec-
trum that can be understood in terms of X-point
acceleration, for which dn/dEDE~3@2. Of course a steeper
spectrum is possible if the processes of energy and particle
losses at the reconnection site are taken into account.

In analyzing particle spectra, we have noted that predic-
tions obtained by using a nonrelativistic approximation
and assuming constant perpendicular magnetic Ðeld accord
reasonably well with simulations in which we make neither
assumption. From this it is clear that the relativistic e†ects
and inhomogeneity in cancel each other out to someB

Mdegree. We should also emphasize that although simple
X-point models provide qualitatively similar results to the
steady-state reconnection solution, these contain a number
of arbitrary factors that cannot be interpreted in terms of
the physical properties of reconnecting current sheets. For
example, it is not clear how the Ðeld strength should be
normalized or what X-point angle should be used. We have
shown here that detailed quantitative predictions can be
made, unhindered by extraneous parameterizations, using
an exact reconnection model.

Our Ðeld model is essentially two dimensional. We can
expect more general three-dimensional solutions to provide
richer acceleration spectra. It is expected, in particular, that
electrons can be easily magnetized by the magnetic Ðeld
component (Litvinenko 1996), resulting in effi-B

z
B 0.1B

xcient electron acceleration to energies corresponding to
X-ray and gamma emission. Hence, the reconnecting mag-
netic Ðeld geometry can be responsible for the electron-to-
proton ratio as a function of energy. Another possible
extension of our approach is through relaxing the steady-
state assumption, using the available time-dependent gener-
alizations of the Craig-Henton model to investigate whether
the accelerated particle spectra and composition can be a
signature of time-dependent reconnection. The results
already obtained, however, should contribute to a better
understanding of magnetic energy conversion and particle
acceleration in solar Ñares. Of particular interest as far as
applications are concerned is the time-extended proton
acceleration that sometimes occurs in the corona for hours
in large gradual solar Ñares.

To conclude, we have given the Ðrst study of test particle
orbits in realistic reconnecting current sheets, described by
an exact MHD solution for the magnetic Ðelds and plasma
Ñows. As an application, we considered proton orbits in
two-dimensional geometries and demonstrated that non-
thermal protons observed in solar Ñares can indeed be gen-
erated in a large-scale current sheet.

This work was partly supported by NSF grant ATM-
9813933, NASA grant NAG 5-7792, and Marsden Fund
Grant 96-UOW-MIS-0006.
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