31 research outputs found

    Tissue Inhibitor of Metalloproteinase–3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells

    Get PDF
    Over expression of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in vascular smooth muscle cells (VSMCs) induces apoptosis and reduces neointima formation occurring after saphenous vein interposition grafting or coronary stenting. In studies to address the mechanism of TIMP-3-driven apoptosis in human VSMCs we find that TIMP-3 increased activation of caspase-8 and apoptosis was inhibited by expression of Cytokine response modifier A (CrmA) and dominant negative FAS-Associated protein with Death Domain (FADD). TIMP-3 induced apoptosis did not cause mitochondrial depolarisation, increase activation of caspase-9 and was not inhibited by over-expression of B-cell Lymphoma 2 (Bcl2), indicating a mitochondrial independent/type-I death receptor pathway. TIMP-3 increased levels of the First Apoptosis Signal receptor (FAS) and depletion of FAS with shRNA showed TIMP-3-induced apoptosis was FAS dependent. TIMP-3 induced formation of the Death-Inducing Signalling Complex (DISC), as detected by immunoprecipitation and by immunofluorescence. Cellular-FADD-like IL-1 converting enzyme-Like Inhibitory Protein (c-FLIP) localised with FAS at the cell periphery in the absence of TIMP-3 and this localisation was lost on TIMP-3 expression with c-FLIP adopting a perinuclear localisation. Although TIMP-3 inhibited FAS shedding, this did not increase total surface levels of FAS but instead increased FAS levels within localised regions at the cell surface. A Disintegrin And Metalloproteinase 17 (ADAM17) is inhibited by TIMP-3 and depletion of ADAM17 with shRNA significantly decreased FAS shedding. However ADAM17 depletion did not induce apoptosis or replicate the effects of TIMP-3 by increasing localised clustering of cell surface FAS. ADAM17-depleted cells could activate caspase-3 when expressing levels of TIMP-3 that were otherwise sub-apoptotic, suggesting a partial role for ADAM17 mediated ectodomain shedding in TIMP-3 mediated apoptosis. We conclude that TIMP-3 induced apoptosis in VSMCs is highly dependent on FAS and is associated with changes in FAS and c-FLIP localisation, but is not solely dependent on shedding of the FAS ectodomain

    Effects of DNA damage in smooth muscle cells in atherosclerosis

    No full text
    Rationale: DNA damage and the DNA damage response (DDR) have been identified in human atherosclerosis, including in vascular smooth muscle cells (VSMCs). However, although double strand breaks (DSBs) are hypothesized to promote plaque progression and instability, in part by promoting cell senescence, apoptosis and inflammation, the direct effects of DSBs in VSMCs seen in atherogenesis are unknown. Objective: To determine the presence and effect of endogenous levels of DSBs in VSMCs on atherosclerosis. Methods and Results: Human atherosclerotic plaque VSMCs showed increased expression of multiple DDR proteins in vitro and in vivo, particularly the MRN complex (MRE11, RAD50, NBS1) that senses DSB repair. Oxidative stress-induced DSBs were increased in plaque VSMCs, but DSB repair was maintained. To determine the effect of DSBs on atherosclerosis, we generated two novel transgenic mice lines expressing NBS1 or C-terminal deleted NBS1 only in VSMCs, and crossed them with ApoE-/- mice. SM22α-NBS1/ApoE-/- VSMCs showed enhanced DSB repair and decreased growth arrest and apoptosis, whereas SM22α-(ΔC)NBS1/ApoE-/- VSMCs showed reduced DSB repair and increased growth arrest and apoptosis. Accelerating or retarding DSB repair did not affect atherosclerosis extent or composition. However, VSMC DNA damage reduced relative fibrous cap areas, whereas accelerating DSB repair increased cap area and VSMC content. Conclusions: Human atherosclerotic plaque VSMCs show increased DNA damage including DSBs and DDR activation. VSMC DNA damage has minimal effects on atherogenesis, but alters plaque phenotype inhibiting fibrous cap areas in advanced lesions. Inhibiting DNA damage in atherosclerosis may be a novel target to promote plaque stability

    ADAM17 depletion in hVSMCs regulates FAS shedding and increases sensitisation to TIMP-3-dependent apoptosis.

    No full text
    <p>A. Western blot for ADAM17 (A17) or FAS in hVSMCs (Cont), infected with lentivirus conferring puromycin resistance alone (Puro), control non-targeting shRNA (shCont) or shRNA targeting ADAM17 (A17-3 and A17-4). ADAM17 is the middle band, flanked by non-specific bands. B. Soluble FAS levels measured by ELISA in cell medium after 72 h from cells in A. Data are means ± SEM, n = 3. *** = P < 0.001, NS = Not Significant. C. Caspase-3 activity in hVSMC lysates from cell transduced with lentivirus expressing control shRNA or ADAM17 targeting shRNA (A17-3 and A17-4) infected with 300 pfu cell<sup>-1</sup> RAd60 or RAdT3-expressing adenovirus. Data are means ± SEM, n = 3. * = P < 0.05, ** = P < 0.01, NS = Not Significant. D. Quantification of surface FAS by single cell image analysis, data shows the mean number of spot-like FAS surface structures per cell, data are means ± SEM, n = 3. * = P < 0.05, *** = P < 0.001.</p
    corecore