149 research outputs found

    Probiotics for preventing acute otitis media in children

    Get PDF
    This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: to assess the effects of probiotics to prevent the occurrence and reduce the severity of acute otitis media in children.</p

    Differential effect of body mass index on pediatric heart transplant outcomes based on diagnosis

    Full text link
    The impact of nutritional status on HT x waitlist mortality in children is unknown, and there are conflicting data regarding the role of nutrition in post‐ HT x survival. This study examined the influence of nutrition on waitlist and post‐ HT x outcomes in children. Children 2–18 yr listed for HT x from 1997 to 2011 were identified from the OPTN database and stratified by BMI percentile. Multivariable logistic regression evaluated the influence of BMI on waitlist mortality. Cox proportional hazard regression assessed the impact of BMI on post‐ HT x mortality. When all 2712 patients were analyzed, BMI did not impact waitlist, one‐, or five‐yr mortality. However, when stratified by diagnosis, BMI  > 95% ( AOR 1.96; 95% CI 1.24, 3.09) and BMI   95% and BMI  < 1% are independent risk factors for waitlist mortality in patients with CM, but not CHD . This suggests differing risk factors based on disease etiology, and an individualized approach to risk assessment based on diagnosis may be warranted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108679/1/petr12352.pd

    Comparison of Chlamydia antigen and AD-like pathology in the brains of BALB/c mice following intranasal infection with Chlamydia muridarum or Chlamydia pneumoniae

    Get PDF
    Previous research indicates BALB/c mice inoculated with Chlamydia pneumoniae (Cpn) demonstrated AD-like pathology which suggests that this mouse model is valid for studying the pathogenesis implicated in Alzheimer’s disease (AD). Studies have demonstrated that Chlamydia trachomatis (Ctr) can disseminate from its primary site of infection and plays a major role in the induction of reactive arthritis. The objectives of this lab are: (1) to identify and localize Chlamydia antigens in the brains of BALB/c mice infected with C. muridarum and (2) to determine if infection with C. muridarum induces AD-like pathology comparable to Cpn. Using mouse adapted respiratory isolates of C. muridarum, we investigated whether C. muridarum disseminated from the respiratory tract to the brain. Mice were intranasally infected with plaqued C small Weiss (CSW) or plaqued mouse pneumonitis Weiss (MoPn Weiss). Brain tissue was isolated at 2 months post-infection. Serial sections from brains infected mice were analyzed for amyloid or Chlamydia antigens. Preliminary analysis of brain tissue demonstrated no detectable difference in C. muridarum antigen between mice receiving 1 x105 IFU and mice receiving 1 x101 IFU, whereas a small but detectable difference was identified in amyloid-specific labeling between these two experimental groups. In contrast, prominent Chlamydia-specific labeling was identified in the brains of Cpn-infected mice as well as substantial amyloid deposition at 2 months p.i.. These data suggest that, relative to Cpn AR-39 infection, C. muridarum infection is a weaker stimulus for inflammation, resulting in decreased amyloid deposition in the brains of BALB/c mice

    High Power Density from a Miniature Microbial Fuel Cell Using \u3ci\u3eShewanella oneidensis\u3c/i\u3e DSP10

    Get PDF
    A miniature microbial fuel cell (mini-MFC) is described that demonstrates high output power per device crosssection (2.0 cm2) and volume (1.2 cm3). Shewanella oneidensis DSP10 in growth medium with lactate and buffered ferricyanide solutions were used as the anolyte and catholyte, respectively. Maximum power densities of 24 and 10 mW/m2 were measured using the true surface areas of reticulated vitreous carbon (RVC) and graphite felt (GF) electrodes without the addition of exogenous mediators in the anolyte. Current densities at maximum power were measured as 44 and 20 mA/m2 for RVC and GF, while short circuit current densities reached 32 mA/m2 for GF anodes and 100 mA/m2 for RVC. When the power density for GF was calculated using the cross sectional area of the device or the volume of the anode chamber, we found values (3 W/m2, 500 W/m3) similar to the maxima reported in the literature. The addition of electron mediators resulted in current and power increases of 30-100%. These power densities were surprisingly high considering a pure S. oneidensis culture was used. We found that the short diffusion lengths and high surface-area-to-chamber volume ratio utilized in the mini-MFC enhanced power density when compared to output from similar macroscopic MFCs

    High Power Density from a Miniature Microbial Fuel Cell Using \u3ci\u3eShewanella oneidensis\u3c/i\u3e DSP10

    Get PDF
    A miniature microbial fuel cell (mini-MFC) is described that demonstrates high output power per device crosssection (2.0 cm2) and volume (1.2 cm3). Shewanella oneidensis DSP10 in growth medium with lactate and buffered ferricyanide solutions were used as the anolyte and catholyte, respectively. Maximum power densities of 24 and 10 mW/m2 were measured using the true surface areas of reticulated vitreous carbon (RVC) and graphite felt (GF) electrodes without the addition of exogenous mediators in the anolyte. Current densities at maximum power were measured as 44 and 20 mA/m2 for RVC and GF, while short circuit current densities reached 32 mA/m2 for GF anodes and 100 mA/m2 for RVC. When the power density for GF was calculated using the cross sectional area of the device or the volume of the anode chamber, we found values (3 W/m2, 500 W/m3) similar to the maxima reported in the literature. The addition of electron mediators resulted in current and power increases of 30-100%. These power densities were surprisingly high considering a pure S. oneidensis culture was used. We found that the short diffusion lengths and high surface-area-to-chamber volume ratio utilized in the mini-MFC enhanced power density when compared to output from similar macroscopic MFCs

    Common ticks of Oklahoma and tick-borne diseases

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Spatial control of bone formation using a porous polymer scaffold co-delivering anabolic RHBMP-2 and anti-resorptive agents

    Get PDF
    Current clinical delivery of recombinant human bone morphogenetic proteins (rhBMPs) utilises freeze-dried collagen. Despite effective new bone generation, rhBMP via collagen can be limited by significant complications due to inflammation and uncontrolled bone formation. This study aimed to produce an alternative rhBMP local delivery system to permit more controllable and superior rhBMP-induced bone formation. Cylindrical porous poly(lactic-co-glycolic acid) (PLGA) scaffolds were manufactured by thermally-induced phase separation. Scaffolds were encapsulated with anabolic rhBMP-2 (20 ÎŒg) ± anti-resorptive agents: zoledronic acid (5 ÎŒg ZA), ZA pre-adsorbed onto hydroxyapatite microparticles, (5 ÎŒg ZA/2 % HA) or IkappaB kinase (IKK) inhibitor (10 ÎŒg PS-1145). Scaffolds were inserted in a 6-mm critical-sized femoral defect in Wistar rats, and compared against rhBMP-2 via collagen. The regenerate region was examined at 6 weeks by 3D microCT and descriptive histology. MicroCT and histology revealed rhBMP-induced bone was more restricted in the PLGA scaffolds than collagen scaffolds (-92.3 % TV, p < 0.01). The regenerate formed by PLGA + rhBMP-2/ZA/HA showed comparable bone volume to rhBMP-2 via collagen, and bone mineral density was +9.1 % higher (p < 0.01). Local adjunct ZA/HA or PS-1145 significantly enhanced PLGA + rhBMP-induced bone formation by +78.2 % and +52.0 %, respectively (p ≀ 0.01). Mechanistically, MG-63 human osteoblast-like cells showed cellular invasion and proliferation within PLGA scaffolds. In conclusion, PLGA scaffolds enabled superior spatial control of rhBMP-induced bone formation over clinically-used collagen. The PLGA scaffold has the potential to avoid uncontrollable bone formation-related safety issues and to customise bone shape by scaffold design. Moreover, local treatment with anti-resorptive agents incorporated within the scaffold further augmented rhBMP-induced bone formation

    “It doesn’t mean I’m useless” How do young people experiencing psychosis contribute to their families and why are their contributions sometimes overlooked?

    Get PDF
    Purpose: Psychosis is often seen as a “burden” on families. and affected individuals frequently hold a negative view of themselves. This study explored the ways in which young adults who have experienced first episode psychosis (FEP) make a positive contribution within their families. Methods: Fifteen participants (seven young people with experience of psychosis and eight relatives) were interviewed separately. Their accounts were analysed using grounded theory methodology (Charmaz, 2006). Results: For many individuals, their experience had led to a catastrophic redefinition of their identity. However, they continued to contribute significantly both within their families and within their wider communities. The redefinition of identity sometimes appeared to create a ‘perceptual filter’ whereby both the person themselves and family members overlooked or minimised their contribution, focusing instead on being alert to signs of psychosis or illness. Conclusions: Shame and a focus on symptoms rather than achievements and contributions can significantly limit opportunities, expectations, and movement beyond an illness identity. It is important for clinicians to be aware of this and to help young people and their families to notice and value positive contribution, and so promote recovery, well-being and post-traumatic growth

    Gymnosperms on the EDGE

    Get PDF
    Driven by limited resources and a sense of urgency, the prioritization of species for conservation has been a persistent concern in conservation science. Gymnosperms (comprising ginkgo, conifers, cycads, and gnetophytes) are one of the most threatened groups of living organisms, with 40% of the species at high risk of extinction, about twice as many as the most recent estimates for all plants (i.e. 21.4%). This high proportion of species facing extinction highlights the urgent action required to secure their future through an objective prioritization approach. The Evolutionary Distinct and Globally Endangered (EDGE) method rapidly ranks species based on their evolutionary distinctiveness and the extinction risks they face. EDGE is applied to gymnosperms using a phylogenetic tree comprising DNA sequence data for 85% of gymnosperm species (923 out of 1090 species), to which the 167 missing species were added, and IUCN Red List assessments available for 92% of species. The effect of different extinction probability transformations and the handling of IUCN data deficient species on the resulting rankings is investigated. Although top entries in our ranking comprise species that were expected to score well (e.g. Wollemia nobilis, Ginkgo biloba), many were unexpected (e.g. Araucaria araucana). These results highlight the necessity of using approaches that integrate evolutionary information in conservation science

    Electron quantum metamaterials in van der Waals heterostructures

    Full text link
    In recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques -- for example in the unique coloring of butterfly wings -- to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer sub-electron wavelength (as well as wavelength-scale) structuring of electronic matter, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures -- e.g., mechanical pick-up/transfer assembly -- atomic scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length-scales (such as electron wavelength, screening length, and electron mean free path). Yet electronic metamaterials promise far richer categories of behavior than those found in conventional optical metamaterial technologies. This is because unlike photons that scarcely interact with each other, electrons in subwavelength structured metamaterials are charged, and strongly interact. As a result, an enormous variety of emergent phenomena can be expected, and radically new classes of interacting quantum metamaterials designed
    • 

    corecore