441 research outputs found

    Vortex matter in mesoscopic superconductors

    Full text link
    Superconducting mesoscopic devices in magnetic fields present novel properties which can only be accounted for by both the quantum confinement of the Cooper pairs and by the interaction between the magnetic-field-induced vortices. Sub-micrometer disks, much the same as their semiconductor counterparts known as quantum dots, are being subject to experimental investigation by measuring their conducting properties and, more recently, their magnetization by using state-of-the-art ballistic Hall magnetometry. In this work I review the main results obtained in these two types of experiments as well as the current theoretical developments which are contributing to our understanding of the superconducting condensate in these systems.Comment: 16 pages, 4 figures. Invited presentation at the 13th International Conference on High Magnetic Fields in Semiconductor Physics to appear in Physica

    The impact of subsidies on the ecological sustainability and future profits from North Sea fisheries

    Get PDF
    Background: This study examines the impact of subsidies on the profitability and ecological stability of the North Sea fisheries over the past 20 years. It shows the negative impact that subsidies can have on both the biomass of important fish species and the possible profit from fisheries. The study includes subsidies in an ecosystem model of the North Sea and examines the possible effects of eliminating fishery subsidies.Methodology/Principal Findings: Hindcast analysis between 1991 and 2003 indicates that subsidies reduced the profitability of the fishery even though gross revenue might have been high for specific fisheries sectors. Simulations seeking to maximise the total revenue between 2004 and 2010 suggest that this can be achieved by increasing the effort of Nephrops trawlers, beam trawlers, and the pelagic trawl-and-seine fleet, while reducing the effort of demersal trawlers. Simulations show that ecological stability can be realised by reducing the effort of the beam trawlers, Nephrops trawlers, pelagic- and demersal trawl-and-seine fleets. This analysis also shows that when subsidies are included, effort will always be higher for all fleets, because it effectively reduces the cost of fishing.Conclusions/Significance: The study found that while removing subsidies might reduce the total catch and revenue, it increases the overall profitability of the fishery and the total biomass of commercially important species. For example, cod, haddock, herring and plaice biomass increased over the simulation when optimising for profit, and when optimising for ecological stability, the biomass for cod, plaice and sole also increased. When subsidies are eliminated, the study shows that rather than forcing those involved in the fishery into the red, fisheries become more profitable, despite a decrease in total revenue due to a loss of subsidies from the government

    Bistable Gradient Networks II: Storage Capacity and Behaviour Near Saturation

    Full text link
    We examine numerically the storage capacity and the behaviour near saturation of an attractor neural network consisting of bistable elements with an adjustable coupling strength, the Bistable Gradient Network (BGN). For strong coupling, we find evidence of a first-order "memory blackout" phase transition as in the Hopfield network. For weak coupling, on the other hand, there is no evidence of such a transition and memorized patterns can be stable even at high levels of loading. The enhanced storage capacity comes, however, at the cost of imperfect retrieval of the patterns from corrupted versions.Comment: 15 pages, 12 eps figures. Submitted to Phys. Rev. E. Sequel to cond-mat/020356

    Non-invasive laminar inference with MEG: comparison of methods and source inversion algorithms

    Get PDF
    Magnetoencephalography (MEG) is a direct measure of neuronal current flow; its anatomical resolution is therefore not constrained by physiology but rather by data quality and the models used to explain these data. Recent simulation work has shown that it is possible to distinguish between signals arising in the deep and superficial cortical laminae given accurate knowledge of these surfaces with respect to the MEG sensors. This previous work has focused around a single inversion scheme (multiple sparse priors) and a single global parametric fit metric (free energy). In this paper we use several different source inversion algorithms and both local and global, as well as parametric and non-parametric fit metrics in order to demonstrate the robustness of the discrimination between layers. We find that only algorithms with some sparsity constraint can successfully be used to make laminar discrimination. Importantly, local t-statistics, global cross-validation and free energy all provide robust and mutually corroborating metrics of fit. We show that discrimination accuracy is affected by patch size estimates, cortical surface features, and lead field strength, which suggests several possible future improvements to this technique. This study demonstrates the possibility of determining the laminar origin of MEG sensor activity, and thus directly testing theories of human cognition that involve laminar- and frequency-specific mechanisms. This possibility can now be achieved using recent developments in high precision MEG, most notably the use of subject-specific head-casts, which allow for significant increases in data quality and therefore anatomically precise MEG recordings

    Nonlinear Mixed-Effect Pharmacokinetic Modeling and Distribution of Doxycycline in Healthy Female Donkeys after Multiple Intragastric Dosing–Preliminary Investigation

    Get PDF
    Doxycycline (DXC) is a broad-spectrum antibacterial antimicrobial administered to horses for the treatment of bacterial infections which may also affect donkeys. Donkeys have a different metabolism than horses, leading to differences in the pharmacokinetics of drugs compared to horses. This study aimed to describe the population pharmacokinetics of DXC in donkeys. Five doses of DXC hyclate (10 mg/kg) were administered via a nasogastric tube, q12 h, to eight non-fasted, healthy, adult jennies. Serum, urine, synovial fluid and endometrium were collected for 72 h following the first administration. Doxycycline concentration was measured by competitive enzyme immunoassay. Serum concentrations versus time data were fitted simultaneously using the stochastic approximation expectation-maximization algorithm for nonlinear mixed effects. A one-compartment model with linear elimination and first-order absorption after intragastric administration, best described the available pharmacokinetic data. Final parameter estimates indicate that DXC has a high volume of distribution (108 L/kg) as well as high absorption (10.3 h-1) in donkeys. However, results suggest that oral DXC at 10 mg/kg q12 h in donkeys would not result in a therapeutic concentration in serum, urine, synovial fluid or endometrium by comparison to the minimum inhibitory concentration of common equine pathogens. Further studies are recommended to identify appropriate dosage and dosing intervals of oral DXC in donkeys

    Asymptotes in SU(2) Recoupling Theory: Wigner Matrices, 3j3j Symbols, and Character Localization

    Full text link
    In this paper we employ a novel technique combining the Euler Maclaurin formula with the saddle point approximation method to obtain the asymptotic behavior (in the limit of large representation index JJ) of generic Wigner matrix elements DMM′J(g)D^{J}_{MM'}(g). We use this result to derive asymptotic formulae for the character χJ(g)\chi^J(g) of an SU(2) group element and for Wigner's 3j3j symbol. Surprisingly, given that we perform five successive layers of approximations, the asymptotic formula we obtain for χJ(g)\chi^J(g) is in fact exact. This result provides a non trivial example of a Duistermaat-Heckman like localization property for discrete sums.Comment: 36 pages, 3 figure

    Topology and Computational Performance of Attractor Neural Networks

    Full text link
    To explore the relation between network structure and function, we studied the computational performance of Hopfield-type attractor neural nets with regular lattice, random, small-world and scale-free topologies. The random net is the most efficient for storage and retrieval of patterns by the entire network. However, in the scale-free case retrieval errors are not distributed uniformly: the portion of a pattern encoded by the subset of highly connected nodes is more robust and efficiently recognized than the rest of the pattern. The scale-free network thus achieves a very strong partial recognition. Implications for brain function and social dynamics are suggestive.Comment: 2 figures included. Submitted to Phys. Rev. Letter

    Vortex states in superconducting rings

    Full text link
    The superconducting state of a thin superconducting disk with a hole is studied within the non-linear Ginzburg-Landau theory in which the demagnetization effect is accurately taken into account. We find that the flux through the hole is not quantized, the superconducting state is stabilized with increasing size of the hole for fixed radius of the disk, and a transition to a multi-vortex state is found if the disk is sufficiently large. Breaking the circular summetry through a non central location of the hole in the disk enhances the multi-vortex state.Comment: 11 pages, 23 figures (postscript). To appear in Physical Review B, Vol. 61 (2000

    A dual point description of mesoscopic superconductors

    Full text link
    We present an analysis of the magnetic response of a mesoscopic superconductor, i.e. a system of sizes comparable to the coherence length and to the London penetration depth. Our approach is based on special properties of the two dimensional Ginzburg-Landau equations, satisfied at the dual point (Îş=12).(\kappa = \frac{1}{\sqrt{2}}). Closed expressions for the free energy and the magnetization of the superconductor are derived. A perturbative analysis in the vicinity of the dual point allows us to take into account vortex interactions, using a new scaling result for the free energy. In order to characterize the vortex/current interactions, we study vortex configurations that are out of thermodynamical equilibrium. Our predictions agree with the results of recent experiments performed on mesoscopic aluminium disks.Comment: revtex, 20 pages, 9 figure

    Transform-domain analysis of packet delay in network nodes with QoS-aware scheduling

    Get PDF
    In order to differentiate the perceived QoS between traffic classes in heterogeneous packet networks, equipment discriminates incoming packets based on their class, particularly in the way queued packets are scheduled for further transmission. We review a common stochastic modelling framework in which scheduling mechanisms can be evaluated, especially with regard to the resulting per-class delay distribution. For this, a discrete-time single-server queue is considered with two classes of packet arrivals, either delay-sensitive (1) or delay-tolerant (2). The steady-state analysis relies on the use of well-chosen supplementary variables and is mainly done in the transform domain. Secondly, we propose and analyse a new type of scheduling mechanism that allows precise control over the amount of delay differentiation between the classes. The idea is to introduce N reserved places in the queue, intended for future arrivals of class 1
    • …
    corecore