13,808 research outputs found

    Spraying calendar

    Get PDF
    Insects and fungi cause Iowa fruit growers and gardeners a loss which in the aggregate amounts to hundreds of thousands of dollars annually. They cause fruit and vegetables to rot and to be wormy and knotty or scabby; they damage blossoms and blossom buds and so interfere more or less with the setting of the fruit; they, destroy a vast amount of foliage or injure it in such a way as to interfere with its work of building up the special kinds of food which the plant must have in order properly to sustain its life, to support its growth, to form fruit buds for the following year, and to store away in its roots, trunk, and branches the reserve supply which it needs to support its active growth during the spring until the new leaves are fully developed and ready for work. Fortunately many of the worst of these insects and diseases may be kept well under control by proper, treatment as outlined in this spraying calendar. It is not best always to follow these general recommendations exactly. The strength of the mixtures and the number of treatments should be varied to fit special cases. It must be left for the manager of the work to decide this matter, but let him remember that, as a rule, the Iowa fruit grower who would be most successful under present conditions must spray systematically and thoroughly every year

    Gravitational Instability in Collisionless Cosmological Pancakes

    Get PDF
    The gravitational instability of cosmological pancakes composed of collisionless dark matter in an Einstein-de Sitter universe is investigated numerically to demonstrate that pancakes are unstable with respect to fragmentation and the formation of filaments. A ``pancake'' is defined here as the nonlinear outcome of the growth of a 1D, sinusoidal, plane-wave, adiabatic density perturbation. We have used high resolution, 2D, N-body simulations by the Particle-Mesh (PM) method to study the response of pancakes to perturbation by either symmetric (density) or antisymmetric (bending or rippling) modes, with corresponding wavevectors k_s and k_a transverse to the wavevector k_p of the unperturbed pancake plane-wave. We consider dark matter which is initially ``cold'' (i.e. with no random thermal velocity in the initial conditions). We also investigate the effect of a finite, random, isotropic, initial velocity dispersion (i.e. initial thermal velocity) on the fate of pancake collapse and instability. Pancakes are shown to be gravitationally unstable with respect to all perturbations of wavelength l<l_p (where l_p= 2pi/k_p). These results are in contradiction with the expectations of an approximate, thin-sheet energy argument.Comment: To appear in the Astrophysical Journal (1997), accepted for publication 10/10/96, single postscript file, 61 pages, 19 figure

    Statistical Tests for CHDM and \LambdaCDM Cosmologies

    Get PDF
    We apply several statistical estimators to high-resolution N-body simulations of two currently viable cosmological models: a mixed dark matter model, having Ων=0.2\Omega_\nu=0.2 contributed by two massive neutrinos (C+2\nuDM), and a Cold Dark Matter model with Cosmological Constant (\LambdaCDM) with Ω0=0.3\Omega_0=0.3 and h=0.7. Our aim is to compare simulated galaxy samples with the Perseus-Pisces redshift survey (PPS). We consider the n-point correlation functions (n=2-4), the N-count probability functions P_N, including the void probability function P_0, and the underdensity probability function U_\epsilon (where \epsilon fixes the underdensity threshold in percentage of the average). We find that P_0 (for which PPS and CfA2 data agree) and P_1 distinguish efficiently between the models, while U_\epsilon is only marginally discriminatory. On the contrary, the reduced skewness and kurtosis are, respectively, S_3\simeq 2.2 and S_4\simeq 6-7 in all cases, quite independent of the scale, in agreement with hierarchical scaling predictions and estimates based on redshift surveys. Among our results, we emphasize the remarkable agreement between PPS data and C+2\nuDM in all the tests performed. In contrast, the above \LambdaCDM model has serious difficulties in reproducing observational data if galaxies and matter overdensities are related in a simple way.Comment: 12 pages, 10 figures, LaTeX (aaspp4 macro), in press on ApJ, Vol. 479, April 199

    Characterization of three types of silicon solar cells for SEPS Deep Space Mission. Volume 3: Current-voltage characteristics of spectrolab sculptured BSR/P+ (K7), BSR/P+ (K6.5) and BSR (K4.5) cells as a function of temperature and intensity

    Get PDF
    Three types of high performance silicon solar cells, sculptured BSR/P+(K7), BSR/P+(K6.5) and BSR(K4.5) manufactured by Spectrolab were evaluated for their low temperature and low intensity performance. Sixteen cells of each type were subjected to 11 temperatures and 9 intensities. The sculptured BSR/P+(K7) cells provided the greatest maximum power output both at 1 AU and at LTLI conditions. The average efficiencies of this cell were 14.4 percent at 1 SC/+25 deg C and 18.5 percent at 0.086 SC/-100 deg C

    7-Li(p,n) Nuclear Data Library for Incident Proton Energies to 150 MeV

    Get PDF
    We describe evaluation methods that make use of experimental data, and nuclear model calculations, to develop an ENDF-formatted data library for the reaction p + Li7 for incident protons with energies up to 150 MeV. The important 7-Li(p,n_0) and 7-Li(p,n_1) reactions are evaluated from the experimental data, with their angular distributions represented using Lengendre polynomial expansions. The decay of the remaining reaction flux is estimated from GNASH nuclear model calculations. The evaluated ENDF-data are described in detail, and illustrated in numerous figures. We also illustrate the use of these data in a representative application by a radiation transport simulation with the code MCNPX.Comment: 11 pages, 8 figures, LaTeX, submitted to Proc. 2000 ANS/ENS International Meeting, Nuclear Applications of Accelerator Technology (AccApp00), November 12-16, Washington, DC, US

    Four-Hundred-and-Ninety-Million-Year Record of Bacteriogenic Iron Oxide Precipitation at Sea-Floor Hydrothermal Vents

    Get PDF
    Fe oxide deposits are commonly found at hydrothermal vent sites at mid-ocean ridge and back-arc sea floor spreading centers, seamounts associated with these spreading centers, and intra-plate seamounts, and can cover extensive areas of the seafloor. These deposits can be attributed to several abiogenic processes and commonly contain micron-scale filamentous textures. Some filaments are cylindrical casts of Fe oxyhydroxides formed around bacterial cells and are thus unquestionably biogenic. The filaments have distinctive morphologies very like structures formed by neutrophilic Fe oxidizing bacteria. It is becoming increasingly apparent that Fe oxidizing bacteria have a significant role in the formation of Fe oxide deposits at marine hydrothermal vents. The presence of Fe oxide filaments in Fe oxides is thus of great potential as a biomarker for Fe oxidizing bacteria in modern and ancient marine hydrothermal vent deposits. The ancient analogues of modern deep-sea hydrothermal Fe oxide deposits are jaspers. A number of jaspers, ranging in age from the early Ordovician to late Eocene, contain abundant Fe oxide filamentous textures with a wide variety of morphologies. Some of these filaments are like structures formed by modern Fe oxidizing bacteria. Together with new data from the modern TAG site, we show that there is direct evidence for bacteriogenic Fe oxide precipitation at marine hydrothermal vent sites for at least the last 490 Ma of the Phanerozoic

    Using stochastic acceleration to place experimental limits on the charge of antihydrogen

    Full text link
    Assuming hydrogen is charge neutral, CPT invariance demands that antihydrogen also be charge neutral. Quantum anomaly cancellation also demands that antihydrogen be charge neutral. Standard techniques based on measurements of macroscopic quantities of atoms cannot be used to measure the charge of antihydrogen. In this paper, we describe how the application of randomly oscillating electric fields to a sample of trapped antihydrogen atoms, a form of stochastic acceleration, can be used to place experimental limits on this charge
    • …
    corecore