79 research outputs found
The Compressibility Burble and the Effect of Compressibility on Pressures and Forces Acting on a Airfoil
Simultaneous air-flow photographs and pressure-distribution measurements were made of the NACA 4412 airfoil at high speeds to determine the physical nature of the compressibility burble. The tests were conducted in the NACA 24-inch high-speed wind tunnel. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations in the 5-inch-chord airfoil by means of a multiple-tube manometer. Following the general program, a few measurements of total-pressure loss in the wake of the airfoil at high speeds were made to illustrate the magnitude of the losses involved and the extent of the disturbed region; and, finally, in order to relate this work to earlier force-test data, a force test of a 5-inch-chord NACA 4412 airfoil was made. The results show the general nature of the phenomenon known as the compressibility burble. The source of the increased drag is shown to be a compression shock that occurs on the airfoil as its speed approaches the speed of sound. Finally, it is indicated that considerable experimentation is needed in order to understand the phenomenon completely
Heliogyro Solar Sail Research at NASA
The recent successful flight of the JAXA IKAROS solar sail has renewed interest within NASA in spinning solar sail concepts for high-performance solar sailing. The heliogyro solar sail, in particular, is being re-examined as a potential game-changing architecture for future solar sailing missions. In this paper, we present an overview of ongoing heliogyro technology development and feasibility assessment activities within NASA. In particular, a small-scale heliogyro solar sail technology demonstration concept will be described. We will also discuss ongoing analytical and experimental heliogyro structural dynamics and controls investigations and provide an outline of future heliogyro development work directed toward enabling a low cost heliogyro technology demonstration mission ca. 2020
Ontogeny-Driven rDNA Rearrangement, Methylation, and Transcription, and Paternal Influence
Gene rearrangement occurs during development in some cell types and this genome dynamics is modulated by intrinsic and extrinsic factors, including growth stimulants and nutrients. This raises a possibility that such structural change in the genome and its subsequent epigenetic modifications may also take place during mammalian ontogeny, a process undergoing finely orchestrated cell division and differentiation. We tested this hypothesis by comparing single nucleotide polymorphism-defined haplotype frequencies and DNA methylation of the rDNA multicopy gene between two mouse ontogenic stages and among three adult tissues of individual mice. Possible influences to the genetic and epigenetic dynamics by paternal exposures were also examined for Cr(III) and acid saline extrinsic factors. Variables derived from litters, individuals, and duplicate assays in large mouse populations were examined using linear mixed-effects model. We report here that active rDNA rearrangement, represented by changes of haplotype frequencies, arises during ontogenic progression from day 8 embryos to 6-week adult mice as well as in different tissue lineages and is modifiable by paternal exposures. The rDNA methylation levels were also altered in concordance with this ontogenic progression and were associated with rDNA haplotypes. Sperm showed highest level of methylation, followed by lungs and livers, and preferentially selected haplotypes that are positively associated with methylation. Livers, maintaining lower levels of rDNA methylation compared with lungs, expressed more rRNA transcript. In vitro transcription demonstrated haplotype-dependent rRNA expression. Thus, the genome is also dynamic during mammalian ontogeny and its rearrangement may trigger epigenetic changes and subsequent transcriptional controls, that are further influenced by paternal exposures
The Effect of Diet Quality and Wing Morph on Male and Female Reproductive Investment in a Nuptial Feeding Ground Cricket
A common approach in the study of life-history trade-off evolution is to manipulate the nutrient content of diets during the life of an individual in order observe how the acquisition of resources influences the relationship between reproduction, lifespan and other life-history parameters such as dispersal. Here, we manipulate the quality of diet that replicate laboratory populations received as a thorough test of how diet quality influences the life-history trade-offs associated with reproductive investment in a nuptial feeding Australian ground cricket (Pteronemobius sp.). In this species, both males and females make significant contributions to the production of offspring, as males provide a nuptial gift by allowing females to chew on a modified tibial spur during copulation and feed directing on their haemolymph. Individuals also have two distinct wing morphs, a short-winged flightless morph and a long-winged morph that has the ability to disperse. By manipulating the quality of diet over seven generations, we found that the reproductive investment of males and females were affected differently by the diet quality treatment and wing morph of the individual. We discuss the broader implications of these findings including the differences in how males and females balance current and future reproductive effort in nuptial feeding insects, the changing nature of sexual selection when diets vary, and how the life-history trade-offs associated with the ability to disperse are expected to differ among populations
Multifaceted highly targeted sequential multidrug treatment of early ambulatory high-risk SARS-CoV-2 infection (COVID-19)
The SARS-CoV-2 virus spreading across the world has led to surges of COVID-19 illness, hospitalizations, and
death. The complex and multifaceted pathophysiology of life-threatening COVID-19 illness including viral mediated
organ damage, cytokine storm, and thrombosis warrants early interventions to address all components of the devastating
illness. In countries where therapeutic nihilism is prevalent, patients endure escalating symptoms and without
early treatment can succumb to delayed in-hospital
care and death. Prompt early initiation of sequenced multidrug
therapy (SMDT) is a widely and currently available
solution to stem the tide of hospitalizations and death. A
multipronged therapeutic approach includes 1) adjuvant
nutraceuticals, 2) combination intracellular anti-infective
therapy, 3) inhaled/oral corticosteroids, 4) antiplatelet
agents/anticoagulants, 5) supportive care including supplemental
oxygen, monitoring, and telemedicine. Randomized
trials of individual, novel oral therapies have not
delivered tools for physicians to combat the pandemic in
practice. No single therapeutic option thus far has been
entirely effective and therefore a combination is required
at this time. An urgent immediate pivot from single drug to
SMDT regimens should be employed as a critical strategy
to deal with the large numbers of acute COVID-19 patients
with the aim of reducing the intensity and duration
of symptoms and avoiding hospitalization and death
Recommended from our members
NACA Technical Reports
"Simultaneous air-flow photographs and pressure-distribution measurements were made of the NACA 4412 airfoil at high speeds to determine the physical nature of the compressibility burble. The tests were conducted in the NACA 24-inch high-speed wind tunnel. The flow photographs were obtained by the Schlieren method and the pressures were simultaneously measured for 54 stations in the 5-inch-chord airfoil by means of a multiple-tube manometer. Following the general program, a few measurements of total-pressure loss in the wake of the airfoil at high speeds were made to illustrate the magnitude of the losses involved and the extent of the disturbed region; and, finally, in order to relate this work to earlier force-test data, a force test of a 5-inch-chord NACA 4412 airfoil was made" (p. 73)
Glyphosate-Resistant Soybean Cultivar Response to Glyphosate
Glyphosate (N-(phosphonomethyl) glycine)-resistant (GR) soybean [Glycine max (L.) Merr.] technology is gaining acceptance in U.S. cropping systems, yet potential yield suppression from either cultivar genetic differentials, the GR gene/gene insertion process, or glyphosate is a concern. Other work shows that the GR gene/gene insertion process may suppress soybean yield. No one has reported the effects of glyphosate on a diverse group of commercially available GR soybean cultivars. In this study we evaluated one of the potential sources of GR yield suppression—the effect of glyphosate on yield, growth, and development of GR cultivars. Field experiments were conducted at four Nebraska locations with12 GR cultivars in 1998 and 13 GR cultivars in 1999. Soybean response to glyphosate, ammonium sulfate (AMS), and water application at 21 and 42 d after soybean emergence was compared with control plots treated with AMS and water in 1998. An additional control, water alone, was added in 1999. Grain yield among cultivars differed as expected with a range of 3.44 to 3.96 Mg ha-1 in the 2-yr averages. Glyphosate did not affect the majority of the soybean growth and development characteristics measured. Grain yield of GR soybean was not affected by glyphosate at any location or when averaged over locations. Two-year average grain yield of cultivars treated with glyphosate, AMS, and water was 3.74 Mg ha-1; this was not different from 3.79 Mg ha-1 with AMS and water treatment
Forest ecosystems, disturbance, and climatic change in Washington State,
Abstract Climatic change is likely to affect Pacific Northwest (PNW) forests in several important ways. In this paper, we address the role of climate in four forest ecosystem processes and project the effects of future climatic change on these processes. First, we analyze how climate affects Douglas-fir growth across the region to understand potential changes in future growth. In areas where Douglas-fir is not water-limited, future growth will continue to vary with interannual climate variability, but in places where Douglas-fir is water-limited, growth is likely to decline due to projected increase in summer potential evapotranspiration. Second, we use existing analyses of climatic controls on future potential tree species ranges to highlight areas where species turnover may be greatest. By the mid 21 st century, some areas of the interior Columbia Basin and eastern Cascades are likely to have climates poorly suited to pine species that are susceptible to mountain pine beetle, and if these pines are climatically stressed, they may be more vulnerable to pine beetle attack. Climatic suitability for Douglas-fir is also likely to change, with substantial decreases in climatically suitable area in the Puget Trough and the Okanogan Highlands. Third, using regression approaches, we examine the relationships between climate and the area burned by fire in the PNW and in eight Washington ecosystems and project future area burned in response to changing climate. Area burned is significantly related to both temperature and precipitation in summer, but more physiologically relevant variables, such as water balance deficit, perform as well or better in models. Regional area burned is likely to to vapor pressure deficit (VPD), and future projections support the hypothesis that summer VPD will increase over a significant portion of the range of host tree species. Due to the increased host vulnerability, MPB populations are expected to become more viable at higher elevations leading to increased incidence of MPB outbreaks The increased rates of disturbance by fire and mountain pine beetle are likely to be more significant agents of changes in forest structure and composition in the 21 st century than species turnover or declines in productivity. This suggests that understanding future disturbance regimes is critical for successful adaptation to climate change
- …