365 research outputs found
GTP and cytosol stimulate phosphoinositide hydrolysis in isolated platelet membranes
Hydrolysis of polyphosphoinositides by phospholipase C was examined in isolated membranes prepared from [32P]labelled platelets. In the presence of GTP[gamma]S, thrombin increased the release of inositol triphosphate and inositol biphosphate approximately 500%. GTP[gamma]S alone stimulated release 2 fold. Maximal activation of thrombin-induced phosphoinositide hydrolysis was observed at 10 uM GTP. Although addition of calcium had no effect, 2 mM EGTA completely inhibited inositolphosphate release. Addition of high speed supernatant to [32P]labelled membranes stimulated the release of inositolphosphates. This hydrolysis was further enhanced by the addition of GTP. These data demonstrate that the breakdown of polyphosphoinositides in isolated platelet membranes is dependent on GTP and stimulated by platelet cytosol.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26137/1/0000213.pd
Effects of Coleus Forskohlii Supplementation on Body Composition and Hematological Profiles in Mildly Overweight Women
<p>Abstract</p> <p>Purpose</p> <p>This study investigated the effects of <it>Coleus Forskohlii </it>(CF) on body composition, and determined the safety and efficacy of supplementation.</p> <p>Methods</p> <p>In a double blind and randomized manner, 23 females supplemented their diet with ForsLean™ (250 mg of 10% CF extract, (n = 7) or a placebo [P] (n = 12) two times per day for 12-wks. Body composition (DEXA), body weight, and psychometric instruments were obtained at 0, 4, 8 & 12 weeks of supplementation. Fasting blood samples and dietary records (4-d) were obtained at 0 and 12-wks. Side effects were recorded on a weekly basis. Data were analyzed by repeated measures ANOVA and are presented as mean changes from baseline for the CF and placebo groups, respectively.</p> <p>Results</p> <p>No significant differences were observed in caloric or macronutrient intake. CF tended to mitigate gains in body mass (-0.7 ± 1.8, 1.0 ± 2.5 kg, p = 0.10) and scanned mass (-0.2 ± 1.3, 1.7 ± 2.9 kg, p = 0.08) with no significant differences in fat mass (-0.2 ± 0.7, 1.1 ± 2.3 kg, p = 0.16), fat free mass (-0.1 ± 1.3, 0.6 ± 1.2 kg, p = 0.21), or body fat (-0.2 ± 1.0, 0.4 ± 1.4%, p = 0.40). Subjects in the CF group tended to report less fatigue (p = 0.07), hunger (p = 0.02), and fullness (p = 0.04). No clinically significant interactions were seen in metabolic markers, blood lipids, muscle and liver enzymes, electrolytes, red cells, white cells, hormones (insulin, TSH, T3, and T4), heart rate, blood pressure, or weekly reports of side effects.</p> <p>Conclusion</p> <p>Results suggest that CF does not appear to promote weight loss but may help mitigate weight gain in overweight females with apparently no clinically significant side effects.</p
A Dual Receptor Crosstalk Model of G-Protein-Coupled Signal Transduction
Macrophage cells that are stimulated by two different ligands that bind to G-protein-coupled receptors (GPCRs) usually respond as if the stimulus effects are additive, but for a minority of ligand combinations the response is synergistic. The G-protein-coupled receptor system integrates signaling cues from the environment to actuate cell morphology, gene expression, ion homeostasis, and other physiological states. We analyze the effects of the two signaling molecules complement factors 5a (C5a) and uridine diphosphate (UDP) on the intracellular second messenger calcium to elucidate the principles that govern the processing of multiple signals by GPCRs. We have developed a formal hypothesis, in the form of a kinetic model, for the mechanism of action of this GPCR signal transduction system using data obtained from RAW264.7 macrophage cells. Bayesian statistical methods are employed to represent uncertainty in both data and model parameters and formally tie the model to experimental data. When the model is also used as a tool in the design of experiments, it predicts a synergistic region in the calcium peak height dose response that results when cells are simultaneously stimulated by C5a and UDP. An analysis of the model reveals a potential mechanism for crosstalk between the Gαi-coupled C5a receptor and the Gαq-coupled UDP receptor signaling systems that results in synergistic calcium release
G-proteins coupled to phosphoinositide hydrolysis in the cochlear and vestibular sensory epithelia of the rat are insensitive to cholera and pertussis toxins
In the cochlear (CSE) and vestibular sensory epithelia (VSE), phosphoinositides are hydrolyzed in response to stimulation of phospholipase C (PLC) by cholinergic muscarinic and purinergic P2y agonists. Such receptor-mediated activation of PLC is expected to be coupled through guanine nucleotide-binding proteins (G-proteins). Although several classes of G-proteins have been identified in the inner ear, nothing is known about the type of G-proteins associated with the phosphoinositide second messenger system in CSE and VSE. Phosphoinositide hydrolysis was determined by the release of radiolabeled inositol phosphates (InsPs). Ten mM NaF plus 10 [mu]M AlCl3 increased basal InsPs accumulation 2-fold in both CSE and VSE of the rat. Release of InsPs was also enhanced by guanosine 5'-O-(3-thiotriphosphate) (GTP-[gamma]-S) in saponin-permeabilized tissues. Furthermore, release of InsPs stimulated by both carbamylcholine (CCh) and adenosine 5'-O-[3-thiotriphosphate](ATP-[gamma]-S) was significantly inhibited by 100 [mu]M guanosine 5'-O-[2-thiodiphosphate](GDP-[beta]-S). These results strongly suggest the involvement of G-proteins in the receptor-PLC coupling in CSE and VSE. ADP-ribosylation in membrane fractions of CSE and VSE in the presence of cholera toxin (CTX) or pertussis toxin (PTX) indicated the existence of Gs- and Gi-type G-proteins. However, neither CTX nor PTX affected basal or agonist-stimulated release of InsPs. These observations suggest that muscarinic and P2y purinergic receptors are coupled to PLC via CTX- and PTX-insensitive G-proteins in CSE and VSE.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31661/1/0000595.pd
Receptor Activation and Inositol Lipid Hydrolysis in Neural Tissues
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66228/1/j.1471-4159.1987.tb05618.x.pd
ISSN exercise & sport nutrition review: research & recommendations
Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients
- …