4,410 research outputs found

    Free Will: Real or Illusion - A Debate

    Get PDF
    Debate on free will with Christian List, Gregg Caruso, and Cory Clark. The exchange is focused on Christian List's book Why Free Will Is Real

    A Chiral, Dendralenic C–H Acid

    Get PDF
    We report the synthesis of a chiral dendralenic C–H acid, which contains three unsubstituted binaphthyl moieties. This motif and an achiral variant can be made from their corresponding bis(sulfone) precursors in one step. Despite the presence of the enantiopure binaphthyl backbone, the newly designed chiral C–H acid showed only poor enantioselectivity in a Mukaiyama aldol reaction. First attempts toward the synthesis of 3,3′-hexasubstituted binaphthyl-based dendralenic acids are also reported

    On mixing and transport at a sheared density interface

    Get PDF
    Mixing and transport of a stratifying scalar are investigated at a density interface imbedded in a turbulent shear flow. Steady-state interfacial shear flows are generated in a laboratory water channel for layer Richardson numbers, Ri, between about 1 and 10. The flow field is made optically homogeneous, enabling the use of laser-induced fluorescence with photodiode array imaging to measure the concentration field at high resolution. False-colour images of the concentration field provide valuable insight into interfacial dynamics: when the local mean shear Richardson number, Ri_s, is less than about 0.40–0.45, interfacial mixing appears to be dominated by Kelvin–Helmholtz (K–H) instabilities; when Ri_s is somewhat larger than this, interfacial mixing appears to be dominated by shear-driven wave breaking. In both cases, vertical transport of mixed fluid from the interfacial region into adjacent turbulent layers is accomplished by large-scale turbulent eddies which impinge on the interface and scour fluid from its outer edges. Motivated by the experimental findings, a model for interfacial mixing and entrainment is developed. A local equilibrium is assumed in which the rate of loss of interfacial fluid by eddy scouring is balanced by the rate of production (local mixing) by interfacial instabilities and molecular diffusion. When a single layer is turbulent and entraining, the model results are as follows: in the molecular-diffusion-dominated regime, δ/h ~ Pe^(−1/2) and E ~ Ri^(−1)Pe^(−1/2); in the wave-breaking-dominated regime, δ/h ~ Ri^(−1/2) and E ~ Ri^(−3/2); and in the K–H-dominated regime, δ/h ~ Ri^(−1) and E ~ Ri^(−2), where δ is the interface thickness, h is the boundary-layer thickness, Pe is the Péclet number, and E is the normalized entrainment velocity. In all three regimes, the maximum concentration anomaly, Γ_m ~ Ri^(−1). When both layers are turbulent and entraining, E and δ depend on combinations of parameters from both layers

    Inhibition of PaCaMKII-E isoform in the dorsal unpaired median neurosecretory cells of cockroach reduces nicotine- and clothianidin-induced currents

    Get PDF
    Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII), which transduces the signal into downstream effects. We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms, and only PaCaMKII-E isoform is specifically expressed in the dorsal unpaired median neurosecretory cells. In the present study, using antisense oligonucleotides, we demonstrated that PaCaMKII-E isoform inhibition reduced nicotine-induced currents through alpha-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptor subtypes. Specifically, PaCaMKII-E isoform is sufficient to repress nicotinic current amplitudes as a result of its depression by antisense oligonucleotides. Similar results were found using the neonicotinoid insecticide clothianidin, which acted as a full agonist of dorsal unpaired median neuron nicotinic acetylcholine receptors. Clothianidin current amplitudes are strongly reduced under bath application of PaCaMKII-E antisense oligonucleotides but no significant results are found with alpha-bungarotoxin co-applied, demonstrating that CaMKII-E isoform affects nicotine currents through alpha-bungarotoxin-sensitive and -insensitive receptor subtypes whereas clothianidin currents are reduced via alpha-bungarotoxin-insensitive receptors. In addition, we found that intracellular calcium increase induced by nicotine and clothianidin were reduced by PaCaMKII-E antisense oligonucleotides, demonstrating that intracellular calcium increase induced by nicotine and clothianidin are affected by PaCaMKII-E inhibition. Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII). We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms and only PaCaMKII-E isoform was specifically expressed in the dorsal unpaired median neurosecretory cells. Here we show that specific inhibition of PaCaMKII-E isoform is associated with a decrease in nicotine- and clothianidin-induced currents. In addition, analysis of calcium changes demonstrates that PaCaMKII-E inhibition induces a decrease in intracellular calcium concentration

    Solid state television camera system Patent

    Get PDF
    Solid state television camera system consisting of monolithic semiconductor mosaic sensor and molecular digital readout system

    The Oxidation of Aroyl Propionic Acids by Sodium Hypochlorite

    Get PDF
    Author Institution: Department of Chemistry, The College of Wooster, Wooster, Ohi

    Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides

    Get PDF
    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two alpha-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, omega-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential gamma (TRPgamma) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPgamma function and nAChR2 sensitivity to acetamiprid. Similar TRPgamma-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating neonicotinoid efficiency and open novel strategies for optimizing insect pest control

    Non-Simplified SUSY: Stau-Coannihilation at LHC and ILC

    Full text link
    If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small stau_1-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states.Comment: 42 pages, 18 figures, 12 table
    • …
    corecore